
University of Toronto, Scarborough Fall CSCC37 
CSCC37 Finals Notes 

Chapter 1 – Floating Point Arithmetic 
Why we might have errors: 

 Truncation (difference between true result for input and the result produced by exact arithmetic, due to approximations like 
truncating a series, etc.) 

 Rounding (difference between result produced by exact arithmetic and result produced by using finite-precision rounded 
arithmetic) 

Well Posed Problems 
 Solution exists 
 Solution is Unique 
 Solutions behavior changes continuously with initial conditions 

Error Systems 
Absolute Error = (approx. value) – (true value) 
Relative Error = (abs error) / (true value) 
 If a quantity has an error of 10-t then the decimal representation of x^ has about t significant digits 
 (Approx. value) = (true value) x (1 + relative error) 
Conditioning 
Conditioning refers to the change of the solution in relation to the change in the input data.  
cond  = |relative change in solution| / |relative change in data| 
 = |(f(x)^ - f(x))/(fx)| / |(x^ - x)/x| 
For x^ = (x+h) where h is the perturbed amount, we have: 
Absolute error = hf’(x) 
Relative error = hf’(x)/f(x) 
Condition = |xf’(x)/f(x)| 
If the condition number is too far from 1, then the system is ill-conditioned 
Backward Error Analysis 
How much data error in initial input is required to account for the error in the final result? (Working backwards) 
Let us have f(x) = ex. We would have for x = 1: 
 Forward Error = f(x)^ - f(x) = -0.051615 
 Backward Error = x^ = log(f(x)^) = -0.019171 
Stability and Accuracy 
Stability – If the result it produces is the exact solution to a nearby problem 
Accuracy – Closeness of a computed solution to the true solution of the problem under consideration 
Stability ! Accuracy. Stable algorithms can give us a solution to a nearby problem, but that may not be relevant if the question is ill-
conditioned. Thus, 
Inaccuracy could be stable algorithms in ill-conditioned, or unstable algorithms to well-conditioned problems 
 
Floating Point Numbers 
Characterized by four integers: 
Β - Base or radix 
t - Precision 
[L; U] - Exponent range 
So basically any number can be represented by: 

X = +/- (d0 + (d1/B) + (d2/B2) + … + (dt-1/Bt-1)Be 
Where 0 <= di <= B-1 and i = 0, …, t – 1 and L <= e <= U 
Which means, that any number in the number system represented by B, t, [L; U] can be represented by having fractions of numbers of 
t length (mantissa length),  
Normalization 
A floating point system is said to be normalized when d0 is nonzero, unless the represented number is zero. Thus, 
1 <= m < B holds. 
Thus, we have the number of normalized floating point numbers as: 
2(B – 1) Bt-1 (U – L + 1) + 1 
^ A ^B  ^C           ^D 
A – We can have two choices of sign, and B-1 options for leading mantissa digit 
B – We can have B options for the next t-1 digits of the mantissa 
C – We can have U-L+1 options for the exponents 
D – We can have zero as a number 



We have Underflow Level (UFL) = BL which means that leading digit is 1, and 0s for rest of mantissa with smallest exponent 
We have Overflow level (OFL) = BU+1(1-B-t) each mantissa digit is as large as possible, with largest possible exponent. 
Floating point numbers are not evenly distributed within their range, but are equally spaced between successive powers of B 
Real Numbers that can be represented in a given floating point system are called machine numbers 
Rounding 
If a given real number is not representable as a FPN, we use a nearby number represented by x = fl(x), this is called rounding  
Roundoff Error is the error that is introduced as a result of this rounding. We have two types of rounding: 
Chop: The base-B expansion is truncated after the (t-1)st digit, so fl(x) is the next number closest to zero from x. 
Round: Rounds to the closest number whose last digit stored is even 
Machine Precision 
We can estimate the accuracy of a floating point system by something called machine epsilon  
For chopping: emach = B1-t 
For rounding: emach = ½ B1-t 

The machine epsilon is important because it defines the largest possible relative error for representing x in a given FPN System: 
|(fl(x) – x) / x | < emach 
Or, we can also use this to say that fl(1+emach) > 1 (which makes sense, the FPR of a FPN + emach must be greater than 1) 
So we have, for all practical FPN Systems: 
0 < UFL < emach

 < OFL 
**Underflow is equal to the number of digits in exponent field, Machine Epsilon is equal to the number of digits in mantissa field! 
Subnormals and Gradual Underflow 
Gradual Underflow is defined as the behavior of having un-normalized numbers, that extend the range of representable numbers (e.g. 
from 1.00 as smallest to 0.10) 
Floating Point Arithmetic 
For two numbers to be added, the exponents must match. If they do not, mantissa digits are shifted until they do match. We will lose 
some trailing digits at the end of the mantissa field.  
For two numbers to be multiplied, the exponents are added, and mantissas multiplied, but then we have up to 2t digits, which we’ll 
lose precision again. 
Overflow is often a problem because there is no good estimation for humungous numbers, whereas zero is good for small numbers, 
thus for a lot of programs overflow aborts due to fatal errors whereas underflow gets silently set to zero 
The reason we use backward analysis is so that we can use real arithmetic (because forward error analysis has FPN errors) 
Cancellation 
Calculating a small quantity as a difference of two large quantities is not very good, because roundoff error will account for most of 
the result. This is called catastrophic cancellation 
 
 

Chapter 2 – Systems of Linear Equations 
 
In the Matrix-Vector notation, a system of linear algebraic equations has the form of Ax = b 
Upper triangular matrix: A matrix with only zero entries below the main diagonal. Solvable by Back- Substitution 
Lower triangular matrix: A matrix with only zero entries above the main diagonal. Solvable by Forward-Substitution 
Permutation Matrix 
A matrix that has the same properties of an identity matrix with several rows interchanged 
Elementary Elimination Matrix 
The nth elementary elimination matrix has the nth column contain mi = ai/ak where i=k+1,…n (so basically, imagine this) 
The divisor ak is called the pivot 
We construct it by having the kth column in the NxN identity matrix be replaced with –mi entries, like such: 

 
We can represent Lk as Mk

-1, which is just Mk with all of its multipliers inverted. 
Products of Gaussian transforms is their union. 
Gaussian Elimination and LU Factorization 
We use Mi to eliminate the ith entries below i on the matrix A until the end. (e.g. M1 eliminates all column entries below M1,1 in A) 
At the end, we now have the equation of MAx = Mn-1Mn-2…M1Ax = Mn-1Mn-2…M1b = Mb 
We can now create the LU factorization, which would be represented as: 
L = M-1 = (Mn-1Mn-2…M1)-1  
U = MA 
Therefore, we have expressed A = LU as our product.  
We can then solve these equations as Ly = b (forward substitution) and Ux = y (backwards substitution) 



 
Pivoting 
If we have a row where the value is zero, we can simply row interchange with another row below it that has a non-zero pivot and 
continue. Otherwise, we can just have Mk = I and continue onwards to the next row. 
However, if we have Mk = I, the back-substitution will fail during the computation of Ux = y, and A is singular. 

 What happens when we have an entry sufficiently small that floating-point arithmetic recognizes it as a 0? 
o We use partial pivoting, which is to say that we choose the largest magnitude on or below diagonal as our pivot 
o Essential for a numerically stable implementation of Gaussian elimination 

We need to use partial pivoting, which uses permutation matrices: 
M = Mn-1Pn-1…M1P1 
Instead of A = LU, we now have PA = LU 
So now we solve Ly = Pb then we use Ux = y 
Larger pivots produce smaller multipliers, and thus smaller errors 
L by partial-pivoting is no longer lower triangular, but is still triangular in the general sense. We can use additional permutation 
matrices to permute A and L to receive a Lower-Triangular L. 
Diagonally Dominant  Each diagonal entry is larger in magnitude than sum of magnitudes of the other entries in its column 
              In this case, we do not need to partially pivot 
Complexity 
The LU factorization of a Gaussian Elimination process takes about n3/3 floating point multiplications and additions, which we can 
write as 
LU Factorization Work = 2N3/3 + O(N2) Flops 
Forward + Back Solve = 2N2 + O(N) Flops 
Gauss Jordan elimination  Like Gaussian elimination, except both above and below are 0s. Same Mi = ai/ak, i = 1…n, 50% expensiver 
 
Norms and Condition Numbers 
Vector Norms 
||x||p = (summation of all elements in x to the pth power)1/p 
||x+y|| <= ||x|| + ||y||  Triangle Inequality 
||x=y|| >= ||x|| - ||y||  Triangle Variation 
Matrix Norms 
||A|| = max (||Ax||)/||x|| (i.e. ||A||1 is the max absolute column sum, ||A||inf is the max absolute row sum) 
 
Condition Number of Matrices 
Cond(A) = ||A|| · ||A-1||  
The condition number of a matrix is how close a matrix is to being singular – larger = closer, smaller (to 1) is further from singularity 
The computation of the condition number is very very expensive, so we usually just estimate it 
We know that if z is the solution vector to Az = y, then we have 
 
Residuals of Solutions 
The residual of solution x^ to the NxN linear system Ax = b is defined as: 
r = b – Ax^ 
We also have A slightly perturbed, so we have: 

 
This relates the relative residual to the relative change in the matrix. Large relative residual implies large backwards error 
SMALL RESIDUALS DO NOT IMPLY SMALL ERRORS (consider large condition numbers!) 
We also have:  

we can also rearrange it to get  
Thus we have the condition number relating the change in solution given relative change in RHS vector 
 
Jacobi Iterative Method 
 
Gauss-Seidel Iterative Method 
 
Cholesky Factorization of A 



 

Chapter 3 – Non-Linear Equations 
Existence and Solutions to Non-linear equations 
Often much harder to find and calculate uniqueness for. 
Conditioning of Roots 
Often multiple roots are ill conditioned. This is because for the case of a root being multiple, we would have the function almost 
parallel to the x-plane at times, possibly having >1 solutions for along that line. 
 
Convergence Rates of Iterative Methods 

If we have r = 1 then the convergence rate is linear 
If we have r > 1 then the convergence rate is super linear If r = 2 then quadratic 

 
The Bisection Method 
Begins with an initial bracket [a, b] and successively reduces its length until the solution has been isolated. To find the roots, we take 
[a, b] as values that have f(a) and f(b) as differently signed. We take the midpoint between the two as m = (b – a)/2 
The number of iterations to reach a tolerance of tol is equivalent to log2(b – a / tol) 
 
The Fixed-Point Iteration  
For a function f(x), we set it to zero, and then we set it to x = …, then we set the LHS x into xn+1 so that we have  
x2 – x – 1  x2 – x = 1  x(x – 1) = 1  x = 1/(x – 1)  xn+1 = 1/(x – 1) 
xn+1 = f(xn) 
We know that a fixed-point iteration converges if |g’(ROOT)| < 1, it converges 
 
Newton’s Method 
We set up the equation so that  
xk+1 = xk – f(xk)/f’(xk) 
To study the convergence of Newton’s Method, we have g’(x) = f(x)f’’(x)/(f’(x))2, when g’(x*) = 0, then Newtons for a simple root is 
quadratic. 
Secant Method 
Similar to Newton’s method, except we use 
xk+1 = xk – f(xk)(xk – xk-1 / f(xk) – f(xk-1)) 
The Secant method is normally superlinearly convergent, although requiring two guesses, it only requires one function evaluation, 
making it more efficient to evaluate than the Newton’s Method, usually. 
 
However, the Secant Method and the Newton’s Method must both be started close enough to the root solution. 
 
 

Chapter 4 – Interpolation 
Definition – Interpolation means fitting function to given data exactly. Not approximation! 
Basis of functions 
Defines a family of functions for interpolating a given set of data. The interpolating polynomial is a linear combination of these 
Methods of Interpolation 
Given x data points, we can construct functions that interpolate to the x-1 degree. 
 
Monomial Basis 
For each pair p = (x, y) we construct a Vandermonde matrix such that it looks like: 
(Given that we have 3 pairs of data points, (x1, y1), (x2, y2), and (x3, y3), we get the coefficients in the Ax = b solution to be the x values 

 
Wherein the x1, x2, x3 values that are our solution set are applied as a multiplication to the basis of [1, x, 
x2, x3…], to obtain for a solution set [-1, 5, -4] to be  
p2(t) = -1 + 5x – 4x2 

 
 

Solving the Vandermonde system requires O(n3) work 
High-degree polynomials are often ill-conditioned because they are significantly less distinguishable when plotted on [0, 1] 
For most choices of data points, the condition number of Vandermonde matrices grow at least exponentially with n data points. 
We can use Horner’s Method or nested evaluation to re-structure the polynomial  
pn-1 = x1 + x2t + … + xntn-1  pn-1 = x1 + t(x2 + t(x3 + t(… (xn-1 + xnt) … ))) 



Which only requires n additions and n multiplications, which is basically O(n) times, or n add-multiply flops 
 
LaGrange Interpolation 
We define the Lagrange interpolation as a having data points (t1, y1)… and having the general formula value given by: 
pn-1 = y1l1(t) + y2l2(t) + … ynln(t) 
Where y1…n defines the y value of the data point, and l1…n defines the Lagrange function of the data point t1…n 
We define the li(ti) as being (where n is the degree), having n terms that look like: 

In general, this means that we have: 
1st term = (x – x2)(x – x3)…(x - xn) / (x1 – x2)(x1 – x3)…(x1 - xn) 
2nd term = (x – x1)(x – x3)…(x - xn) / (x2 – x1)(x2 – x3)…(x2 - xn) 

Basically, set up a n-long multiplication and division featuring the term of (x – x1…n)/(xi – x1…n) but remove the case where i = term # 
(because that will just be = 1) 
 
Lagrange interpolation makes it easy to determine interpolating polynomial, but much more expensive to evaluate compared to 
monomial basis representation. Its also more difficult to integrate, differentiate, etc. 
 
Newton Interpolation 
We had the previous two methods for when the matrix A was full (Vandermonde) or diagonal (LaGrange). Now we have the basis 
between the two, the Newton interpolation. For a set of having data points (t1, y1)… We can determine x1…n by a table of div diff, then: 
pn-1 = x1 + x2(t – t1) + x3(t – t1)(t – t2) + … + xn(t – t1)(t – t2)…(t – tn) 
We can use Horner’s method of nested evaluation to rearrange this to a more efficient evaluation, as follows: 
pn-1(t) = x1 + (t – t1)(x2 + (t – t2)(x3 + (t – t3)…) 
 
Using the divided differences, we can find that the values for x1, x2… as stated above in the Newton Interpolation polynomial 
 
If we have derivatives, we can simply use the rule shown in lecture that the  
Method of Undetermined Coefficients for Change-of-Basis 
If we want to convert from Lagrange to monomial basis, we can take 
Each Lagrange term, and evaluate it by multiplying through (e.g. 3x2 + 2x + 1)then converting into a basis [1, x, x2], being [1, 2, 3]T 
Putting each transposed (now column) vector into a Matrix 
Setting up the equation [Lagrange matrix][coefficients of Lagrange] = [x1, x2, … xn]T and solving for the solution set x, the coefficients 
of the monomial basis 
Same thing for Newtons method. 
 

Runge’s Function and Behavior – It may be that higher function 
degrees have giant variations in interpolation, which means for all 
intents and purposes, it is useless for interpolating points. We 
should replace this type of problem with a piecewise function for 
more efficient and more accurate estimation (linear splines). The 
Runge function being defined as: f(t) = 1/(1+25t2) 
 
We can choose Chebyshev points, to ensure that they are not 
equally spaced out but bunched near the ends of the intervals. 
Using the Chebyshev points distributes error more evenly, and 
makes it much smoother.  
However, we can’t always choose Chebyshev points because we 
are usually given pre-existing data points to calculate from. 

Piecewise Polynomial Interpolation 
We would have a spline interpolation wherein for data points p1, p2, p3 we have the two intervals between the functions represented as 
[t1, t2] and [t2, t3]. Therefore, we can denote these two polynomials by having: 
p1 = u1 + u2t + u3t2 + u4t3 
p2 = v1 + v2t + v3t2 + v4t3 

 

Linear Spline Between Several Points 
We have the equation as f(x) = y0 + (y1 – y0)/(x1 – x0) (x – x0) 
So we just construct an equation for each interval, e.g. between [a, b] for each a, b that define the piecewise polynomial intervals 
Then we set up a piecewise definition that  
 { f1 if n0 < x < m0 
P(x) =  { f2 if n1 < x < m1 
 { f3 if n2 < x < m2 



Chapter 5 – Numerical Integration and Differentiation 
Numerical Quadrature 
We want to compute the quantity of the form, 

We assume that the general interval of integration to be finite and continuous and smooth 
We seek a single number as an answer 

We have the formula that 
We understand that the points xi are called the nodes 
We understand that the multipliers are called the weights 
We understand that the Rn value is the error 

However, we can simply estimate (with removing the error) 
 
Which is known as the Quadrature Rule 
 

Linear Operator 
We have a linear operator Q(f) if it satisfies the classic rules of a linear transformation, that is: 
Q(αf + g)  αQ(f) + Q(g) 
If Q(f) integrates [1, x, x2, … xn], then Q(f) integrates all polynomials of degree <= n exactly. 
 
We have the Newton-Cotes Quadrature Rules 

If we have nodes xi equally spaced in the interval [a, b] we have the following rules: 
Midpoint Rule 
Interpolating the function at one point, the midpoint of the interval, we have: 

 
Trapezoid Rule 
Interpolating the function at the two endpoints of the interval, we have: 

 
Simpson’s Rule 
Interpolating the function at three points, one midpoint and two end points, we have: 

 
We can prove Simpson’s rule by the Method of Undetermined Coefficients, by using the Vandermonde Matrix and Gaussian Elim 
 
Error Estimation 
We have the error for the midpoint quadrature rule as very simply: 
En = I(f) – Qn(f) wherein this is the difference between the true value and the quadrature rule estimation for the value 
 
We have the approximate error between the Midpoint Rule (M) and the Trapezoid Rule (T) modelled as: 
EM = (T – M) / 3 
ET = f’’(x)/2 (b – a)3 

ES
 = 1/90 (b – a / 2)5 |f4(x)| wherein x Is some value in [a, b] 

 
Composite Quadrature Rules 
Similar to piecewise interpolation, we should derive piecewise quadrature rules over given intervals. 
Composite Midpoint Rule 

 
Composite Trapezoidal Rule 

 


