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Chapter 1 – Embedded Systems and Sensors 
1.0 Introduction to Embedded Systems 
Embedded System – A system designed for a special purpose with the ability to execute software and interact with the environment 
in a specific way 
 CONTAINS: 

- I/O 
- Processing Unit (CPU/MCU/SOAC) – Central Processing Unit, Microprocessing Unit, System on a Chip 

o CPU (has ALU, databus, control units, etc.) 
o MCU 

 It is a CPU + embedded I/O 
 Arduino development boards, etc 

o DSP (interfaces to connect microphones) Digital Signal Processor 
 Processes Math and Signals 

o Systems on a chip 
 Qualcomm Snapdragon is a SOAC - not just a CPU 
 Everything on a motherboard goes into the same chip 
 Smaller, energy efficient, cheaper 
 Loses ability to upgrade components, have to completely replace once obsolete 

- Choice depends on: Pricing, Speed, and Codebase 
Common Issues of Embedded Systems Programming: 

- Costs 
- Reliability/Failsafes 
- Specific hardware limitations 
- Security Limitations 
- FPGAs  

o Programming hardware so that it can implement logical functions 
Firmware- The software that runs an embedded system 
Embedded System Design tradeoffs: 
 Price, power, computational power 
 
1.1 Sensors  
Sensor – Thing that converts analog data to digital data. Take a physical quantity, and by some process, convert it to an electric 
signal. This conversion is usually imprecise, or noisy 
 Properties of Sensors: 
  Consistency: When measuring the same property it should give the same result 
  Precision: How much detail the result has 
  Accuracy: How close the result is to the actual quantity being measured 
 Good Sensors: Sensitive to the quantity being measured but not to other quantities not being measured 
 
r(x) = ax+b, where x is physical quantity and r(x) is the response. We want a scaled representation of the quantity we are measuring 
 r(x) = response 
 x = physical quantity 
 b = offset 
We can also have stuff like r(x) = a*log(x) 
We know that r(x) = x does not exist due to NOISE. 
Major Steps for sensing: 

- Measuring the signal (from physical to electric signal, conversion is noisy) 
- Storing electric signal (precision and significant figures, missing data) 

Zero Noise Model 
 Doesn’t work at all for particle filtering… not realistic. 
Noisy Sensor Model 
R(x) = f(x) + noise 
 Where noise is sampling noise (conversion, sampling, quantization, measuring) 
  Observation – measuring changes the quantity one is measuring 
Noise Filtering 
Need a noise model 
 Uniformly distributed (random static on a channel) 



 Zero Mean Gaussian noise (evenly distributed lower chances of noise) 
 ZMG model is superior, as we have a PDF to check the zero-mean. We only need the STD Dev to measure the noise. The 
smaller the sigma the better. 
We assume that usually, the noise is Zero Mean Gaussian and IID (Independently Identically Distributed) 
Filtering noise out by averaging works if x is slow-changing 
What if x changes over time? We need to filter/sample! 
 Capture your signal 
 Filter noise out (assumption about how noise behaves) 
  Noise changes faster than the signal 
Sampling 
 Taking uniform data points from analog signal to reconstruct a digital representation. As above ^ 
 Sampling Frequency 
  More sampling -> More storage required, limited by speed of sampling process 
  Less sampling -> Loss of accuracy 
 Critical amount of sampling needed to capture signal in digital format: 2x Max Frequency/Signal 
  e.g. since human hearing is 20HZ-20kHz, we should sample at 40kHz 
 Aliasing 
  When we sample at a rate that creates a digital representation of data that does NOT represent the signal we are 
  sampling. (Fake signal data!) 
 
 

Chapter 2 – Localization 
2.0 Localization 
Localization – the process of finding out where you are on a given map when placed at a randomized location. Map contains 
landmarks that identify locations. Use sensors to determine surroundings and match corresponding landmarks onto the map 
Assumptions  
 1 Map does not change and is up-to-date 
 2 Robot does not move randomly, only under guidance 
 3 Robot can estimate its motion 
Approaches to Robot Localization: (Both are super noisy and generally deviate from truth as time progresses)  

- Dead Reckoning – Calculating one’s current position using previously determined location and advancing from that 
position using estimated speeds over elapsed time and course – tracking motion over time 

- Inertial navigation – Using sensors to determine acceleration and rotation instead of distance travelled and determine 
position using that 

- Absolute measurement – The usage of landmark and beacons to triangulate position, landmarks being specific and 
identifiable. Lots of demand on identifying landmarks and finding specific landmarks. Enormous effort to create 

Localization in Robotics 
The proper method is to use probability. 
 Belief -> The certainty of the robot about the world around it 
Markov Localization – Sebastian Thrun 
 Bel(xk) = P(xk | d0, d1…dk) 
This means that the 
 Belief of robots state at xk = probability of xk position in map given data measurements d0…dk 
The idea is to use recent information, such that 
 Xk-1 is where the robot was a moment ago 
 Dk is the current measurement 
 Ak-1 is what the robot just did 
Initially at x0, the robots probability is uniformly distributed all over the map 
It takes two different steps: 
 Acting – P(xk | xk-1, ak-1) Remark: Needs to know how robot moves 
 Sensing – P(dk | xk) – agreement. Remark: P(xk | dk) is maximum likelihood 
Histogram Localization 
Divide map into a grid and assign probabilities to each square. 
Localization Steps: 
 Senses, updates grid probability, normalizes 
 Moves, shifts grid probability, normalizes 
 Bel = Sum(P(xk | xk-1)) 
Difficult – think of difficulty to transform map of Toronto into a grid map 
Particle Filtering 



Random particles with even distribution with x, y vectors, directional angles, and belief probabilities 
 Choose available action, perform on robot and all particles 
 Use sensor to measure surroundings, measure belief of each particle and update it 
 Replace all particles with particles of same set size, chosen randomly (resampling) 
 
2.1 Particle Filtering 
We use Acting and Sensing to localize a robot.  
Acting – Moving, grabbing stuff, sounds 
Sensing – Measure environment to gather evidence 
Uses Markov Localization: Bel(xk | xk=1, dk) 
 Uses the last location of the robot and current measurements to determine the belief at current location 
Particle Filtering uses Acting, Sensing, and Resampling to localize a robot. 
Acting Step 

- Robot chooses an action 
- Applies same action to all particles 
Movement of Particles MUST be noisy as Robot movement is noisy 

Sensing Step 
- Uses robot’s sensors to take measurements 
- Compares measurements with simulated Ground Truth using map data for particles 
- Compares sensor readings from robot to particle 
- Updates beliefs for particles depending on the difference of sensed measurements of particle and robot 
- Normalizes all particle beliefs 
How to compare values 
Error = Sensor(Robot) – Sensor(Particle) 
Plot normal distribution of error, obtain P(Error) 
Take Bel(pk) = P(Errork) * Bel(pk-1) 
Multiple Values? 
Find the Euclidean error, that is              

Resampling Step 
Put all particles on a line, choose between [0, 1] randomly until a particle is chosen. Add to set. Repeat until set is full again 
We can choose to replace a percentage (10%) of particles before resampling with new random particles and small beliefs.  
If particles continue to disagree, the robot is unrecoverable and must be fully reset to try to re-localize. 
 
Motion Model – The way the robot moves through the environment including all mechanical models and noise 
 
 

Chapter 3 – Control Systems 
3.0 Control Systems 
Dynamical Systems – Airplanes, cars, quadcopters, etc. 
Control – Establish Desired Behavior 
Control System – The component 
(mechanical/electronic + algorithm) intended to bring 
the system to the reference state 
 Must work in the presence of disturbances 
Example – Cruise Control for a Car 
 Reference: Desired speed 
 Measure: Current speed 
 Solution: Account for the relative speed of the car 
and  increase/decrease or accelerate/brake relative to 
that 
Model – dx/dt (^x) = f(x, u), where: 

x is state vector that describes the system 
 u is the input 
Example – For a 2D car travelling on 1D road, 
 Constant speed x = [Px, Vx] (pos/velocity) 
 ^x = [0 1, 1 0][Px, Vx] 
Plant - The component that generates feedback output? 
Closed Loop Feedback - Control system where controller applies an input based on output value  



Modern Control Systems 
Input -> [Actuator, System, Sensors] -> Output | 
  |        | 
  -----------------------Control--------------------------------------- 
PID Controllers 
Needs to measure error = reference – measured value 
Uses three components – P, I, D: 
 Proportional Component: 
  (control input) 

 u = k1e 
 Integral Component 
  (time component, exploring how long error has existed, forces error to zero) 

u = k1e + k2 ∫ e dt 
 Derivative Component 
  (dampening and making sure not to overshoot, reduces oscillations) 
  u = k1e + k2∫ e dt + k3 de/dt 
3.1 Kalman Filters 
Neural Net Controllers, ran millions of times to figure out how the difference between what it is supposed to do and what it does, 
coming closer every time. (Trained on simulator) 
 Also called Model Predictive Control 
Kalman Filtering Getting a solid and reliable estimate for the state of a system 
Feedback controller uses the correlation between estimated and measured to improve the estimate of needed 
 Works in a dynamic system 
 Keeps track of the state vector 
 Requires a model for the system that can account for bad movements 
Assume that both the sensor and process are noisy, noise assumed to be Zero mean Gaussian 
Model Used – State is a vector Xt that contains set of state variables. The goal is to produce values of Xt+1 
Equation for the evolution of a system –  
 Xt = FtXt-1 + BtUt + Wt 
FtXt-1 is the old state and how it affects the old state (Ft matrix) 
BtUt are the new inputs 
Wt are the noises 
Sensor Model 
Zt = HtXt + Vt 
Zt is sensor measurement at t 
Xt is the state variable 
Vt is the noise 
Ht is how much the state affects sensor measurements 
Kalman filters are limited to linear systems 
 There are tricks to apply Kalman filters for non-linear systems though 
 
 

Chapter 4 – Reliability and Robustness 
4.0 Building Fault-Tolerant Systems 
Case study – the Therac-25 

- Medical radiation machine 
- First one to be software controlled 
- 2 paths of operation based on time constraints, really fast triggers start therapy before inputs are entered 
- Bad error messages 
- Software did not check if input was safe 
- Design process was broken 

Things to consider: 
Overconfidence in software 
Confusing reliability with safety 
Complacency 
Discounting of software risk 
Inadequate software engineering 
Software reuse 



Safe vs User friendly user interfaces 
Case study – the Mars rover 

- Planned to last 90 days but lasted 30x longer, almost died on Day 18 
- Wasn’t entering sleep cycle 
- Ran out of memory mounting the file system 
- Stuck in a reboot loop 
- Off shelf software did not delete info just marked for deletion 

Mars orbiter -> Burnt on arrival, didn’t account for unit conversion 
 
Best Engineering Possible 
Reliability – Probability that a system will work as intended over a given period of time (i.e. planes will work 99.9% over 5h) 
MTTF – Mean time to failure, average time until failure occurs, doesn’t say anything about safety, better to have a backup 
Availability – The % of the time the system is up (used for services) 
 
Model Reliability –  
Coverage – If some component fails, others can be used to mask that 
 We want systems with good coverage 
Dependency – Try to eliminate single points of failure 
 Components depend on something that can fail, invalidates the coverage 
Combinatorial Parts Model 
Can model reliability with success tree, such as reliability of P = 0.95 and C = 0.999, reliability of system that uses P and C is 
(0.95)*(0.999) per 5h. 
 AND – Multiply 
 OR – (1 -     (1 – REL1) * (1 – REL2) ) 
Redundancy in Computer Systems 

- Need to vote (odd number of sensors, odd one’s value is considered faulty) 
- Need redundant hardware, computing hardware, software 
- Replicate sensors (vote with majority, use median) 

Redundancy in Software: 
- Safe software, different teams, different companies, different languages 
- Even number of components, 1 is different for redundancy 
- Expected to fly plane given any 2 failures 
- Failure detection is hard 

o Abrupt failure, failure can be detected right away 
o Gradual failure, results seem correct but will gradually worsen (bad!) 
o Random failure, results are correct but sometimes not (BAD!) 

Consensus and voting-out reconfiguration 
 Technique to detect faulting computer systems so that they can be ignored and do not cause systems to failure 
Fault Tolerant Control (FTC): 
Passive  
 Robust control 
 Good controller 
Active 
 On-line (learns on the fly, neutral networks) 
 Projection 
  Train or build a controller for every situation 
  Failure system will select a controller based on diagnosis of sensor failure 
  Should be big enough for every situation 
 
4.2 Human or Computer Control 
Case Study – Electronic Stability Program (ESP) 

- Makes adjustments to individual brakes to control the car better than any human can 
- Increased safety 
- Reduced car crashes by 43% if all installed in cars 

Things to consider: 
How much control should we give to automated systems vs human control? 
Case Study – Boeing vs Airbus 
Boeing: 

- Less automation 
- Allows pilot to do what they want but provides feedback 



Airbus: 
- More automation 
- Computer provides oversight (can override pilot) 
- Complications arise when emergencies happen 

Case Study – Air France Flight 447 
- Autopilot failed, control to pilots 
- Pilots should have been able to fly, but couldn’t due to lack of knowledge 

 
4.3 Finite State Control Systems 
Components of AI: 
Input/Perception - Decision Making/Planning  Control 
We can use Finite State Machines (FSMs) for AI 

- States are equivalent to behaviors 
- Transitions are triggered by input, or changes in behavior 

Pros: 
- Efficient 
- No complex computation 
- Predictable 
- Simulation is possible 
- Can be mathematically analyzed 

Cons:  
- Finite amount of created states 
- Cannot adapt to experience 
- Predictability can be exploited 
- Can result in spaghetti code 

 
4.4 Robot Perception 
Robot perception is buggy: 

- We lose depth 
- We blur motion 
- Lose ability to make sense of image data 

One solution -> Make patches, match patches, and if enough match, we can assume that it is the same picture 
Localization using Landmarks is possible 
In case we do not have a map, we use SLAM 
 Self Localization and Mapping 

1. Determine Which landmarks are visible and check against an array of known landmarks for positions of landmark 
2. Move robot to new location 
3. Sense and measure again in step 1 

 
4.5 Code Optimization 
Pipelining – (Fetch, Decode, Execute, FDE), improves number of instructions per clock cycle (IPC) and shorter clock cycles 
Branch Prediction – Determine which condition will be ran most often and try to replace to be optimal (less checks). Technique that 
reduces impact of conditional statements on processor pipeline 
Caching – Faster than RAM, diferent levels in CPU, code and data are separated, but can reuse data and code, and especially access 
pattern 
 
Optimization Patterns: 
Local Variables  - minimize local variables in functions, stored in a stack, have to be allocated then deallocated. 
Parameter passing and returning value: Don’t return large data structures by value, pass DS by reference 
Caching -  Think locality and order-of-access (multi dimensional arrays) 
Strength Reduction – Less usage of multiplication, more addition/subtraction, etc. 
 
Optimizing Code Flow: 
Sequential Code – Sequential from start to end, no branching or cases 

Minimize Branching/Function Calls 
Inline shorter functions 

 
Simplify if statements 
 Use Boolean Algebra to simplify 
 Nested If Statements 



  Code for common cases first 
 Single If statements 
  Code for most constraining condition first 
 
Switch statement instead of nested if/else 
 Can be transformed into a Jump Table 
 
Loop Unrolling 
 We can reduce the number of evaluations for each loop by unrolling it 
 
Profiling Code 
The technique used to fnd bottlenecks in a program so that the slowest things can be optimized 
 Use 
  valgrind --tool=callgrind ./program 

 Check 
  kcachegrind callgrind.out.nnnnn 
 

Chapter 5 – Real Time Systems 
Operating Systems are responsible for Scheduling Processes and handling Resource Management 
OS needs to handle all to these things because all modern systems have multiple processes running 
Everything must ask OS for resources, OS can pause/start any other process 
 
Real Time Operation 
Deals with immediate changes in environment 
Needs to minimize lag: 

- Has to have as little lag as possible 
- Ensure that there are no conditions under which lag can grow to very long periods 

Control systems needs to be run on real time systems 
After some time, plans, control input, AI, etc. is not valid for the current state of the system anymore 
Case Study: Video games and the ATARI 2600 

- Can’t have lag 
- Interrupt service routines (ISR) 

Real Time Constraint 
- Operational deadlines must be met 
- Multiple processes have deadlines and must be scheduled 
- Asynchronous events must be handled 
- Types of RTCS: 

o Hard (missed deadlines means system failures) 
o Firm (allows infrequent missed deadlines) 
o Soft (missed deadlines means degraded service) 

Schedulers – Scheduled processes to be completed 
- Earliest Deadline First – not a good idea unless you have enough resources 
- Round Robin – maybe nothing is completed on time 
- Priority Based – Processes have priorities, CPU time goes to higher priorities, longer process idles, higher priorirty 

 
Preemptive Multitasking: 
Pre-emption: Interrupting a task before it has completed 

Context Switch: Switching between tasks, time required to swap depends on what resources needs to be released on task

 



Priority Inversion 

  
PROBLEM: A medium priority task is stopping a low priority task from releasing its resources, thus a high priority task (T2) is stalled.  
SOLUTION: Lower priority task will inherit priority from higher priority task when releasing its resources for the higher priority task 
 
Real Time OS Examples: 
QNX: Canadian company working on Operating Systems 
Micro kernel -> Minimum set of operating system functionality, scheduling, memory management, interprocess management 
 
Partitioning Operating Systems: 
Separation of system resources into partitions to dedicate to individual applications 
Each process can only use their own specific partitions 
Ensures that process’s resource consummation does not grow out of control 


