
CSCD27 Final Notes.md 12/8/2019

1 / 29

CSCD27 - Introduction to Computer Security

Introduction to Security
Security issues are commonly caused by:

Bugs (buffer overflows, x-site scripting, etc.)
Insecure Configuration (improper auth, mediation, etc.)
No security by design

Security and Design
Safety: For reasonable inputs, get reasonable outputs
Security For unreasonable inputs, get reasonable outputs

CIA Properties of Security

Term Idea

Confidentiality Information is disclosed to legitimate users

Integrity Information is created or modified by legitimate users

Availability Information is accessible to legitimate users

Anonymity: Do not record identity of user that performed action
Non-repudiation: Someone cannot deny having done an action
Accountability: Knowing that someone has done an action
Security is often a compromise and engineered

Risk Analysis: Inferring what can go wrong with the system and creating a set of security goals
You can’t prevent, only lower risk

Risk Exposure: Probability * impact

Cryptography

Classical Cryptography
Communication has several threats,

Interception: (read messages) Confidentiality
Modification: (modify messages) Integrity
Fabrication: (inject messages) Integrity
Interruption: (stop/block messages) Availability

Defintions
Caesar Cipher: One of the oldest cryptosystems, a substitution cipher
Plaintext: Message in clear form

CSCD27 Final Notes.md 12/8/2019

2 / 29

Ciphertext: Message in ciphered/encrypted form
Encryption: Transform plaintext to ciphertext
Decryption: Transform ciphertext to plaintext
Cryptographic algorithm: Method to do encryption/decryption
Cryptographic key: An input variable used by algorithm above to do transformation
N-bit security entropy: The number of bits necessary to encode the number of possible keys

i.e. Caesar cipher’s key is v where v denotes character shift #. Since 26 == 0 for shift, there are 25
total possible keys < 25 = 32, so, Caesar cipher has 5-bit security entropy

Kerckhoff’s Principle
The enemy knows the system. That is, a cryptosystem should be secure even if everything about the
system is known except for the key

(can’t rely on them not knowing what type of encryption there is!)

Types of Cipher Attacks

Term Idea

Exhaustive Search try all possible keys

Ciphertext Only you know one or several random ciphertexts

Known Plaintext you know one or several random plaintext and corresponding ciphertexts

Chosen Plaintext you know several pairs of chosen plaintext and corresponding ciphertexts

Chosen Ciphertext you know one or several pairs of plaintext and their corresponding chosen ciphertext

Example attack on Caesar
You can use statistical cryptanalysis, monoalphabetic ciphers do not change freq. of characters

Evolution of cryptography

> substitution > transposition > polyalphabetic > mechanization > public key

Substitution ciphers: Mono-alphabetic cipher (Permutation of alphabet)
Like vigenere cipher, j

Transposition cipher: Switch letters around a permutation (key being set of permutations)
Like XORing message with secret

Polyalphabetic: Just add word (key) to message
Ex. Vigenere Cipher

One-time Pad: Perfect cipher, very hard to use in practice
Mechanization: Stuff like the Enigma Machine and the telegraph

Modern Cryptography

CSCD27 Final Notes.md 12/8/2019

3 / 29

Three core methods of Cryptography

Term Idea

Diffusion Mixing-up symbols

Confusion Replacing a symbol with another

Randomization Repeated encryptions of the same text are different

Functional Requirements
Dk(Ek(m)) = m

Decrypting an encrypted text of message M using the same key K yields the message M
Ek(m) is easy to compute (polynomial/linear)
Dk(m) is easy to compute
c = Ek(m)

Finding m is very difficult without k (exponential)

Symmetric Encryption

Stream Cipher

Characteristics: Earlier, faster, large volumes of data
Typical idea: Sse IV, or Initialization Vector to act as an additional randomization factor

Examples

XOR Cipher: Modern version of Vigenere, using XOR to combine message and key, but prone to
known-plaintext
Mauborgne Cipher: Uses a random stream as encryption key, problem is key-reused attack
Rivest Cipher 4 (RC4): 8 cycles/byte (fast), 40-2048 bits key – BROKEN in 2015

WEP (wired equivalent privacy)
RC4_key = IV + SSID_password, transmitted in clear
50% chance of same IV being used again after 5000 packets

Salsa20: 4 cycles/byte (very fast), 128/256 bits key

Block Cipher

Characteristics: Later, slower, more secure
Typical idea: Combines confusion (substitution) and diffusion (permutation), not vulnerable to known-
plaintext

Encryption Modes

Data Encryption Standard (DES): 50 cycles/byte (slow), 56 bits key – withdrew as standard in 2004
Brute forced in 1998 in days, 250K, and hours in 2006, 10K$
2DES is bad because you can make lookup tables
3DES is actually very very good, used in PGP, TLS/SSL, etc.

Extremely slow

CSCD27 Final Notes.md 12/8/2019

4 / 29

Advanced Encryption Standard (AES): 18-20 cycles/bytes, 128/192/256 bits, adopted in 2001
ECB (Electronic code book): Each block is encrypted independently with the key

Blocks can be parallelized but same block is encrypted to same plaintext
CBC (cipher block chaining): Each block is encrypted using randomness from previous block,
can’t be parallelized
CTR (Counter): Randomness using a counter, there’s high entropy and parallelism, but sensitive
to key-reused

Cryptographic Hashing

H(mn) = m’n’ is a hash function if:
H is a one way function
n (bit len) is unbounded
n’ is short

2 types of hashing functions
Non keyed (IV is fixed)

H(mn) = m’n’
Keyed (IV is the key)

Hk(mn) = m’n’

Characteristics

Term Idea

PR - Pre-image Resistance given H, x – hard fo find m, original message

2PR - Second Pre-image Resistance given H, m, x, hard to find m’ such that H(m) = H(m’) = x

CR - Collision Resistance given H, hard to find m and m’ such that H(m) = H(m’) = x

Merkle-Damgard construction

A way to build CR hash functions from one-way CR compression functions. If H is CR, then M-D is CR

Message Authentication Code (MAC)

CSCD27 Final Notes.md 12/8/2019

5 / 29

Used to confirm message came from stated sender (authenticity)
Uses a keyed hash, MACk(m) = Hk(m)
Vulnerable to some Hash length extension attack

Example: MACk(m || m’) = H(MACk(m) || m’)
Prevention: Envelope method MACk(m) = H(k || m || k), or padding method, H((k
XOR opad)||(k XOR ipad)||m)

We can ensure:
Confidentiality with Encryption (illegitimate users can’t read)
Integrity with HMAC (hashed Message Authentication Code, stamp of approval)

We can ensure both, with Authenticated Encryption
AEk(m) = Ek(m) || Hk(m)

Basically appends the certificate/hmac to the end of the message

Replay Attacks

Just uses the same message + HMAC as before, can lead to devastating results (e.g. withdraw $100 x
100)

Countered by:
Using a double nonce (random number)
Timestamps

Challenges

How do they agree on the key?
**Key Distribution Center: ** When A/B want to talk, KDC can generate new keys and give it to
them. It must be trusted, and it’s a SSOF

Needham Schroeder Sym Key Protocol: Gives a certain set of keys to Alice, Mallory, Bob. Can be
broken and fixed (see slides)
Trust Models

Decentralized Trust Model (web of trust, like GnuPG)
Centralized Trust Model (public key infrastructure, like TLS)

Web of Trust: Alice should only trust Bob’s key by fingerprint, either by Bob or by someone who
already trusts Bob
Public Key Infra: The browser should verify the certificate against certificate authorities (root,
intermediary CAs)

Asymmetric Encryption

Characteristics

Encoding, Decoding, and generating keys is trivial.
Finding message or finding matching key is very hard.

Terms

Public Key: Kp for encryption
Private Key: Ks for decryption
Handshake: Dks(Ekp(m)) = m

CSCD27 Final Notes.md 12/8/2019

6 / 29

RSA

Dependent on prime number theory
IDEA: Use RSA to encrypt a shared key, use AES to encrypt message using that key
Other asymmetric schemes: Diffie-Hellman, El-Gamal, Elliptic Curve Cryptography

Digital Signatures
Use public cryptography to sign and verify things
m || SIGKsa(m) where SIGKsa(m) = EKsa(H(m))
This has the properties of integrity and nonrepudiation
Transport Layer Security works this way. It provides confidentiality and integrity

Conclusion
Symmetric: Fast, but needs key agreement
Asymmetric: Slow, but doesn’t need key agreement

Internet (In)security

Layer Vulnerabilities
Communication Protocol: How communications should take place, usually defines data encoding,
message sequence, etc.
Established by IETF (Internet Engineering Task Force)

Internet Layers

Application Layer

BGP (Border Gateway protocol): BGP is the protocol for establishing routes for Ip messages
Route Hijacking: Attacker can advertise fake routes

DNS (Domain Name server): Translates domain names into IP addresses
DNS Cache Poisoning: Attackers can advertise fake DNS information

Transport Layer

Collection of protocols to allow end-to-end connections
Attacker can,

Determine open hosts by using 3-way handshake
Flood server by spawning new listeners using 3-way handshake
Guess current sequence number for existing connection and send reset flag to terminate
connection

UDP (User Datagram Protocol)
No acknowledgement, flow control, guarantee, etc. Used for media streamingprimarily
When UDP is received on non-opened port, host replies with ICMP – Destination Unreachable.
They can send large number of UDP to all ports, done in the Low orbit Ion cannon attack

CSCD27 Final Notes.md 12/8/2019

7 / 29

Network Layer

Collection of protocols to connect networks together, how messages are routed through networks
based on different IP addresses
ICMP (Internet Control Message protocol)

Exchange information about the network, error reporting, reachability
Attacker can,

Scan entire network to find IP addresses of active hosts (nmap)
Generate raw IP packets with custom IP source fields
Split 64K payload and overflow a buffer
Overwhelm a host by sending multiple ICMP echo requests

ARP (Address Resolution Protocol)
This is a mapping between MAC and IP addresses. Hosts broadcast IP/MAC to others to build
table
ARP Cache Poisoning: Can broadcast fake IP-MAC mappings to the other hosts on the network

Link Layer

Collection of protocols to connect hosts through a medium (copper, fibre, air)
Media Access Control (MAC) Addresses are physical addresses - how hosts are connected to mediums
Attacker can use network interface in promiscuous mode to capture (sniff) all traffic, even if its not to its
MAC address (wireshark)

Internet Attacks

Common Attacks

Scanning (surveying network and its hosts)
Eavesdropping (reading messages)
Spoofing (forge illegitimate messages)
DOS (denial of service)

Asymmetric
Cheap for attacker, expensive for victim due to protocol amplification

Internet Protection

Transport layer security TLS

Provides integrity and confidentiality
2-10x slower than insecure TCP connection
Not used in practice to secure DNS/BGP

Preventing most attacks

Attack Prevention

Packet Sniffing using a switch to forward messages on specific ports

CSCD27 Final Notes.md 12/8/2019

8 / 29

Attack Prevention

ARP Spoofing
use static ARP tables (not practical), or authenticating ARP messages (not
implemented)

IP Forgery IPSec provides authentication and encryption of Ip traffic (rare in practice)

DNS Spoofing
DNSSec provides authentication, but not widely deployed, instead use DNS over
HTTPs

Route
Hijacking/BGP

use Bogon filterning, deny route advertised by hosts with spoofed addresses (used by
ISPs)

TCP-syn flooding use TCP-syn cookie to prevent needing to keep track of stuff, exchange this cookie

DoS/DDoS
network ingress filtering – deny access to network from spoofed addresses, ensure
traffic is traceable

ICMP host
discovery

limit ICMP or disable for non-same network hosts

Port Scanning
TCP connections can be rejected if they try to connect on too many multiple ports
simultaneously

Protection terms

Item Description

Firewall
logical defense parameter that acts as an access control between two networks (mainly packet
filtering inbound traffic)

DMZ demilitarized zone, exposes public servers like web, mail, databases, etc.

IDS
Intrusion detection systems (looks at headers, contents, fragmentation) and performs deep
packet inspection in stealth mode

IPS intrusion prevention system (IDS + firewall)

TOR

the Onion Router. The more nodes available the more secure it is. One type of anonymous VPN.
Compromises in >3 nodes are fine due to limited knowledge between nodes. It prevents IP
address identification but does not prevent application identity information (web tracking) to
identify you

Human Authentication and Authorization
Identification — Assigning a set of data to a subject

Authentication — Making a safe link between a subject and one or more identities

Human Authorization Factors
Something known (password, PIN) – Good as long as you can remember and not guessable

CSCD27 Final Notes.md 12/8/2019

9 / 29

Something owned (IDs, keys, etc) – Good as long as not damaged or lost and not duplicatable
Something you (fingerprint, biometrics, etc.) – Robustness depends on quality/precision of this
measure

Password Storage methods
Clear: Bad
Hashed: Bad because passwords that are the same have the same hash
Salted Hash: Good, and easy to manage
Encrypted: Best, but complex to manage

Authorization
The system enables the subjects to use the resources
The subjects are the active entities of the system
The resources are made available by the system

Access-control matrix: Who has what access All models implement this
Role-based lists: Roles have access, people have roles Easier to manage
Complete mediation: Every access to every object must be mediated

Incomplete mediation means that attackers can do something that policy cannot allow
Least privilege: Do not grant subjects more rights than they need

Vulnerability that allows attacker to gain privileges that policy does not allow
There are many access control models depending on application and policy (e.g. constraints,
administration, etc.)

Attacks on Authorization

Incomplete mediation
A misconfiguration in system allows attacker to do something the abstract policy does not allow

Privilege Escalation
A vulnerability in the system allows an attacker to gain privileges that the abstract policy does
not allow

Operating Systems & Program (in)security

Overview of an operating system
Has a kernel, which acts as an API for interacting with the hardware
We have the user-space which has the software that requires the hardware such as,

System calls
Applications
Services (Daemon)

What is a Daemon?
These are programs that run in the background such as

CSCD27 Final Notes.md 12/8/2019

10 / 29

System services
Network services (Servers)
Monitoring
Scheduled tasks

Security
There are things called policies which stop certain users from interacting with certain things such as,

Alice being unable to access other users or kernel directly
Or Alice performing actions to the admin (root)

Hypothesis
Programs are run by an authenticated user (Authentication)
Resources are accessed through programs (Authorization)
Every access is checked by the system (Complete Mediation)
Everything is "secured" are long as the system is well configured and programs behave as expected, but...

Problems

Threats (How can security be compromised?)

A program can crash or have undesirable behavior

Vulnerabilities

Malicious Program — Program designed to compromise security of the OS. User executes the malware

Vulnerable Program — Not designed to compromise the OS. User executes a legit program that executes
the malware

Code Execution Vulnerability: A vulnerability that can be exploited to execute a malicious program
Malicious programs are software that is distributed to users to install, as vulnerable have malicious files

What happens when a bug occurs?

Nothing, the program and/or OS are "fault tolerant"
Program gives wrong result or crashes, but security of system is not compromised
Resources are locked or OS crashes
Program computes something that its not suppose to (Malicious code)

Timeline of a vulnerability

The program is released with vulnerability
Vulnerability is publicly disclosed (Common Vulnerabilities and Exposures (CVE) alert) (Most dangerous)
Recommendation is issued
Patch is released
Patch is applied (All good)

Attacks

CSCD27 Final Notes.md 12/8/2019

11 / 29

Buffer Overflow Attacks

Inject wrong data input in a way that it will be interpreted as instructions
This works because data and instructions are the same - binary values in memory
Discovered as early as 1972, first severe attack in 1988

Stack execution

void func(char* str) {
 char buf[126];
 strcpy(buf, str);
}

Local vars Pointer to previous frame Return address Arguments Previous frame

buf sfp red addr str frame of calling func

SFP - Stack Frame Pointer

EBP - Base pointer

ESP - Current Stack Pointer

The top of the stack is on the right

Overstuffing buffer

strcpy does notcheck for the length of *str. Therefore, if we put more than the buf size (126 characters),
it would overwrite the stuff after it
Ie if we add 4 bytes to skip over sfp, then 4 bytes for the address to the buffer. We can make it execute
code from buffer.

TOCTOU Attacks (Time Of Check to Time Of Use)

Also called race condition attack
Idea is to swap the file that is about to be run by a program that requires higher privileges to open.

This targets concurrent programs with different privileges that use files to share data.
This however requires precise timing

e.g. Attacker can use symlink("/etc/passwd", "file"); to link important resource to file to be
opened instead between authentication step and opening step

What is a secure system?

Some are ... So ...

More deployed than others More targetted by hackers

More complex than others More points of failure

CSCD27 Final Notes.md 12/8/2019

12 / 29

Some are ... So ...

More open to third party code than others More "amateur" codes

Security and Design

Safety: For reasonable inputs, get reasonable outputs
Security For unreasonable inputs, get reasonable outputs

What makes a good security metric? (Jonathan Nightingale)

Severity

If directly exploitable or requires users to "cooperate"

Exposure Window

How long are users exposed to vulnerability?

Complete Disclosure

Do vendors disclose vulnerabilities found internally?

Discovering and Exploiting Vulnerabilities
Vulnerability Assessment: Identify and quantify the vulnerabilities of a system
Penetration Testing: Deliberate attack of a system with the intention of finding security weakness

Tools

Reconnaissance
NMAP (Network Mapping and Fingerprinting) - host discovery, OS detection,
TCP/UDP scanning

Vulnerability
Assessment

OpenVAS - Vulnerability Scanner

Penetration Testing Metasploit - Exploit Framework

NMAP

Host discovery, OS detection, Full TCP port scanning, Version detection, Export a full scan to file
UDP Scan, Stealth Scan (to go through firewalls), Slow Scan (to avoid detection), Scripting engine (to
exploit vulnerabilities)

OpenVAS

Does a scan and gives a report of vulnerabilities

Metasploit

CSCD27 Final Notes.md 12/8/2019

13 / 29

Allows for the loading and execution of exploits (Basically a uniform automated UI)

Armitage

Kinda like OpenVAS and Metasploit together, it finds exploits and allows you to use them at same place

Stack Smashing Defences

Canaries
Compiler modifies every function's prologue and epilogue regions to place and check a value (canary)
on the stack
If overflow, then it gets overwritten. Therefore, it detects theres a problem
Theres a few types such as random canaries or xor canaries
Can disable the protection with -fno-stack-protector
Can be bypassed with Structured Exception Handling (SEH) exploit that makes exception to
point to own code

DEP/NX - Data Execution Prevention / No Execution
Program marks important structures in memory as non-executable by generating hardware-level
exception if executing from those regions
Which makes normal stack buffer overflows that run shellcode impossible
Can disable with -z execstack
Can be bypassed with Return-to-lib-c exploit which makes a subroutine of lib C thats in the
process's executable memory

Basically stitch some code out of code from libc

ASLR - Address space layout randomization
The OS randomizes the location (random offset) where standard libraries and other elements are in
memory
Basically harder to guess addresses
Can disable with sysctl kernel.randomize_va_space=0
Can be bypassed with Return-Oriented-Program (ROP) or brute force (Less practical with 64bit
machines)

Use instruction pieces of existing programs to weave the exploit

Protection

How to lower risk of security flaw resulting from bug
1. Build better programs
2. Build better operating systems

Better programs

CSCD27 Final Notes.md 12/8/2019

14 / 29

Type-safe (Or memory safe)
Pure Lisp, pure Java, ADA

Isolate potentially unsafe code
Modula-3, Java with native methods, C#

Hopeless
Assembly, C

Type-Safe Programs

Cannot access arbitrary memory addresses
Cannot corrupt own memory
Do not crash

How to make better programs with unsafe languages

Defensive — Good programming practices and being security aware
Proactive — Use system libraries and penetration testing
Formal — using formal methods to verify and generate a program

Defensive Programming Approach

1. Adopt good practices

Modularity
Easier to security flaws

Encapsulation
Avoid wrong usage

Information hiding
Hide implementation (Doesn't improve security)

2. Be security aware

Check inputs even between components (Mutual suspicion)
Be "fault tolerant" by having consistent policy to handle failure (managing exceptions)
Reuse known and widely used code via design patterns and existing libraries

Proactive Approach

1. Use security libraries

For stack smashing, check if stack has not been altered when function returns
If altered, return seg fault

Examples
Libsafe
Stackguard
ProPolice (gcc patches)
Microsoft's Data Execution Prevention

CSCD27 Final Notes.md 12/8/2019

15 / 29

2. Perform peneratration testing

Test functionalities
Unit test, Integration test, performance test, etc.

Test security
Penetration test
Basically, trying to make software fail by pushing limits of a "normal" usage (ie. test what
program is not suppose to do)

Formal Approach

1. Use formal methods to verify program

Static analysis (Analyze the code to detect security flaws)
Control flow, analyzing sequence of instructions
Data flow, analyzing how the data is accessed
Data strcture, analyzing how data is organized

Abstract interpretation
Basically we can't test everything, so we just have to make sure that it would vaguely be within
range (An estimate)

2. Use formal methods to generate program

Turn mathematical description of program into executable code or hardwre design
We know that it works well by doing varies proofs of correctness and refinement
Examples

VHDL, Verilog
Used by semi-conductor companies such as Intel

Critical embedded software (B/Z, Lustre/Esterel)
Urban Transportation, Aeronautics, Nuclear plants

Pros and Cons

It's proven safe and can't possibly get better
Takes alot of time, effort, and money to make
Does not prevent specification bugs such as network protocols

Better operating systems
Testing done in sandboxes, a tightly controlled set of resources for untrusted programs to run in
Have different types such as servers (Virtual machines), programs (Chroo, sandbox, Metro App
Sandboxing), and applets (Java/Flash for web)

Intrusion Detection/Prevention Systems (IDS/IPS)

Based on signatures (well known programs) and behaviours (unknown programs)
Example, Syslog and Systrace on Linux
But vulnerable to malicious programs residing in kernel called "rootkits"

CSCD27 Final Notes.md 12/8/2019

16 / 29

Security Assurance
Basically a way validate how secure an organization or product/system is

Validating Organization (ISO/IEC 27k)
Objective: Provide the best practice recommendations on information security management, risks and
controls

Similar to ISO/IEC 9k for quality assurance

How to get certified?

1. Submit an evaluation plan to registrar
2. Registrar runs first audit and grant certification
3. Registrar keeps auditing to guarantee certification

What is inside?

List of 133 candidate control objectives and controls
Each control must be addressed one by one in evaluation plan

Governing principles

Based on iterative program solving process (Deming's Wheel - PDCA)
Plan: Run risk analysis and define security policy
Do: Design & build security solutions (Called controls)
Check: Measure security solutions
Act: Improve the security assurance

What do the controls cover?

Risk assessment (How to drive the risk analysis)
Security policy
Organization of information security (Governance)
Asset Management (Inventory & classification of information assets)
Human Resources protection (Security aspects for employees joining, moving, and leaving org)
Physical and environmental security (Protection of computer facilities)
Communications and operations management (Infrastructure supporting activity)
Access Control (Access rights)
Information systems acquisition, development, and maintenance (Result of activity)
Information security incident management (CERT)
Compliance (Ensuring conformance with security policies)

Validating Product/System (Common Criteria)
Objective: Provide evaluation methodology of,

Defining security functionalities
Defining assurance requirements

CSCD27 Final Notes.md 12/8/2019

17 / 29

Determining whether product meet requirements
Determing measure of evaluation results in Evaluation Assurance Level (EAL)

Technical evaluation based on security assurance methods
Testing and penetration testing
Formal development and/or verification

TCSEC = "The Orange Book" (1983-1999)

Used to evaluate and classify computer systems regarding storage, retrieving and processing of
sensative data

By US department of defence in the 70s

Governing Principles

Introduce concept of policy
Must be explicit and enforceable by computer system
Two kinds - DAC and MAC

Introduce concept of accountability
Users must be identified and authenticated
Each access must be logged

Security Assurance Classes (1991-2001)

Class D: Minimal protection
No security requirements

Class C: Discretionary Security Protection
Multi-user environment and data with different sensitivity levels

Class B: Mandatory Security Protection
Object labels, user clearance levels, and multilevel security policy

Class A: Verified Protection
Formal design and verification

Common Criteria (Since 1998)

Protection Profile: Functionalities and security requirements of product/system
Written by system consumer

Security Target: Identifies security properties
Written by software designer in response to the protection profile

Evaluation Assurance Levels (EAL)

EAL 1 Functionally Tested
Requires documention of security function vounching for minimum confidence regarding
correctness, but threats are not as serious

EAL 2 Structurally Tested
Requires delivery of test procedures and results

EAL 3 Methodically Tested, and Checked
Requires developers to be aware of good software engineering practices

CSCD27 Final Notes.md 12/8/2019

18 / 29

EAL 4 Methodically Designed, Tested, and Reviewed
Requires good commercial development methods to ensure good software engineering practices

EAL 5 Semi-formally Designed, and Tested
Requires rigorous commercial development practices supported by a security expert

EAL 6 Semi-formally Verified Design, and Tested
Requires rigorous development environment

EAL 7 Formally Verified Design, and Tested
Requires rigorous security-oriented development environment

Issues

1. Preparing documentation for evaluation takes alot of effort
Product is obsolete once certified

2. Processes such as evaluation is costly
Return on investment is not necessarily a more secure product

3. Evaluation is performed on documentation and not product itself
A good EAL does not prevent security flaws

Malware

Action

Performs unasked for operations on the system
Rabbit: Exhausts hardware resources of system until failure
Backdoor: Allows attacker to take control of system bypassing authorization mechanisms (Also control
type)
Spyware: Collects information
Spamware: Uses system to send spam
Ransomware: Restricts access to data and resources, and demands ransom
Adware: Renders unasked for advertisement

Dissimulation

Avoid detection by anti-malware programs
Rootkit: Hides the existence of malicious activities

Infection

Penetrate a system and spread to others
Replication: Copy itself to spread

Virus: Contaminates existing executable programs
Worm: Exploits service's vulnerability

Subterfuge: Based on user's credulity
Trojan Horse: Tricks user to execute malicious code

Control

Activate malicious code

CSCD27 Final Notes.md 12/8/2019

19 / 29

Backdoor: Communicates with command & control servers allowing attacker to control virus
Logic Bomb: Activiates malicious code when certain conditions are met

History of malicious code
70s: Era of first self-replicating programs
80s: Era of maturity and first pandemics
90s: Era of self-modifying virus and macro viruses
00s: Era of Trojan horses and internet worms
10s: Era pf cyber-warefare viruses

70s
ANIMAL (Simple Joke)

Replication through the file system with no effect
Creeper/Reaper (Disruptive)

Replication through modem and copied itself to remote system
Displays I'M THE CREEPER : CATCH ME IF YOU CAN
Reaper was made to hunt Creeper

Rabbit (Destructive)
Replication through filesystem, which reduces system performance til crashing

These are classified as viruses. There are two types of viruses
Resident: Remains in memory after infected programs terminates
Non-resident: Becomes inactive as soon as infect program terminates

80s

Apparition of boot sector viruses

Elk Cloner
Displays short poem on every 50th boot on infected computer

Brain
Disk label changed to "Brain" and advertisement text is written in boot sectors
Moves bootstrap loader elsewhere, puts virus code into boot sector. Therefore it runs before
boot

Pandemics

Jerusalem (MS-DOS)
Destroys all executable files on infected machines upon every occurence of Friday 13th

SCA (Amiga)
Desplays a text every 15th boot
40% of amiga owners were infected

Christmas Tree EXEC (IBM/PC)
Displays a snow flow animation
Paralyzed several international computer networks in December 1987

Anti-virus softwares

CSCD27 Final Notes.md 12/8/2019

20 / 29

Virus Scanner (Detection)
Signature based: Using signature database of existing viruses
Behavior based: Looking for suspicious code patterns that can be used by viruses

Virus Removal Tools (Sanitation)
Cleaning memory and filesystem

Avoiding Detection

Cascade
Virus encrypts itself with cryptographic key and changes key when replicating
Each instance looks different
Emergence of polymorphic viruses

90s

The Chaeleon Family (Polymorphic Virus)

Ply
DOS 16-bit based complicated polymorphic virus with built-in permutation engine

Anatomy of polymorphic virus

Mutates when replicating, but keeps original algorithm. Does this by,
Using cryptography
Injecting garbage code
Doing permutations within certain instructions/blocks of instructions
Using code obfuscation techniques

Can only be detected by detecting code patterns used for self-modification

Metamorphic Virus

Virus that can reprogram itself by,
Using different instructions
Having different strategies to implement a functionality

Zmist: First metamorphic virus
Simile: First mutli-OS metamorphic virus

Macro Viruses

Virus that is written in scripting languages used by some office applications (can be cross platform)
ie. Written in VBS, embedded in MS-office document which activities when document is open

Concept: First Word macro virus that was also the most common. It did nothing tho.
Meliisa: Shutdown email systems that got clogged with infect emails

00s

Trojan Horses

Program disguised as legitimate program/file. Most cases replicated through emails

CSCD27 Final Notes.md 12/8/2019

21 / 29

VBS/Loverletter ILOVEYOU: Caused 5.5 to 10 billion dollars in damage
Sobig: Sobig.F set a record in sheer volume of e-mails
MyDoom: Broke record set by Sobig.F

Worms

Explots a security flaw to infect machine and replicate itself through the network
Very fast (doesn't need user to be activated)
Has payload

Has a few factors
Wide adoption of internet
Global network is good medium for virus pandemics
Multiplication of internet applications and services
Fast publication of program vulnerabilities
Slow release/adoption of corrective patches

Examples

Code-Red
Exploits security flaw (buffer overflow) of Microsoft IIS web server patched one month later

Nimda
Explots another MS-IIS security flaw and is most widespread worm so far

Klez
Exploits security flaw of IE layout engine used by Outlook and IE
Infection through email attachment and user doesn't need to open the attachment to get
infected

SQL-Slammer (Also called Sapphire)
Exploits flaw in MS-SQL serers that got a patch six months later
Caused DOS and dramatically slowed global internet traffic

Sasser
Exploits buffer overflow of Microsoft LSASS on Windows 2000 and XP

Blaster (Also called Lovesan)
Exploits flaw in DCOM-RPC services on Windows 2000 and XP
SYN flood against port 80 of windowsupdated.com

Welchia (Also called Nachia)
Exploits same flaw as Blaster
Used to correct security flaw by patching system (Counters Blaster)

Conficker
Explits flaw in NetBIOS, disables auto-update and adds dictionary password cracker and
backdoor to turn machine into bot
Believed to be orignated from Ukraine and/or Russia

Web Worms

Santy
Exploits vulnerability in phpBB and uses Google to find new targets
Infected 40k sites before Google filtered search query used by worm

CSCD27 Final Notes.md 12/8/2019

22 / 29

XSS worms

Exploits a cross site scripting within website
Samy - Target MySpace
JTV.worm - Target Justiin.tv
Twitter.worm - Target Twitter

10s

Cyber-warfare Virus

W32.Dozor
Virus that created a botnet dedicated to perform DDoS attack on South Korea and US
government website
Believed to originate from China and/or North Korea

Stuxnet
Sophisticated virus that targets SCADA systems (Supervisory control and data acquisition)
Believed to have taken down 4000 nuclear centrifuges in Iran
Beleived to originate from USA and Israel

Flame (Also called Skywiper)
Espionage virus that embeds sophisticated spywares believed to be from US (Olympic Games
defence program)

Ransomware

Reveton
Displays message from law enforcement agency saying you have pirated software and child porn
Ask to pay fine using prepaid cash service

CryptoLocker
Encrypts specific files on machine with 2048 RSA key
Ask to pay ransom with Bit coins

WannaCry and Petya
Use vulnerability found in NSA hacking toolkit leak
Researcher found "kill switch"
Paralyzed hospital in UK and trains in Germany

IoT malware and Cryptominers

Mirai
Infects IoT devices, and most powerful DDoS attacks to date

Coinhive
JS in website and popular malware as well

Hoax Viruses (Really Dumb)

Gives you the method to detect and remove virus and ask you to transfer this email to your contacts
Almost harmless and do nothing by themselves (But users do)

CSCD27 Final Notes.md 12/8/2019

23 / 29

Modern Malicious Code
Exploded around 2000s (144% between 2012 and 2013)
Why?

There's money for malicious software
Easy to hire hacker or get cutting-edge hacking tools online
In conclusion, making a new malware is as simple as assembling pieces available online

How to create new malware
1. Create malware's payload (a.k.a building a RAT)
2. Make malware undetectable (a.k.a packing a malware)
3. Spread the malware

What malware do
Take control of victim's device turning it into a zombie/bot
Act as spam relay or DDoS relay
Steal personal information like passwords, bank info
Clickbot for traffic
...

1. Remote Administration Tool (RAT)
Basically remote admin tool with

Stealth features
Specific functionalities such as camera controller, hardware destroyer, password loggers, etc.

DIY RATs

Pro: Free and Personalized
Con: Time consuming and requires good expertise of targetted system

Commerical Off-The-Shelf RATs

Zeus: Initially $700, but open source
DarkComet: Open source
BlackShades: Can be purchased from official company
Basically has menu with options, and even has options for you to troll people

2. Make malware undetectable

Detection methods

Static Analysis
Scan program comparing it to a collection of signatures
Bypassed with encryption and code obfuscation

Dynamic Analysis

CSCD27 Final Notes.md 12/8/2019

24 / 29

Run program in sandbox and infer from its behavior
Bypassed by detecting environment and employ trigger based behaviors

DIY packing

Pro: Free and Personalized
Con: Requires good expertise of cryptography, code obfuscation, and execution environment

Commerical Off-The-Shelf Crypter

Byte Crypter
Datascrambler
BlackShades Crypter
Functionalities include

Start malware on startup
Block sandbox from monitoring
Kill other bots
Protect from botkiller
Delay for dynamic analysis
Persistence and binder

3. Spread the malware

Via Social Engineering

Trick people to download and install malware. Some ways,
Tutorial on hacking that makes you install malware
Video/chat player to exclusive content or people
Pirated software on P2P

Pro: Free
Con: Dfficult to get cautious people infect and limited impact

Via webpage

Exploit browser/plugin vulnerability to automatically download and install malware on victim device
Pro: Everyone with vulnerable browser can be infected, can be used for massive infections and
targetted ones
Con: Requires good expertise of target browser, it's vulnerabilities, and how to exploit them

Buy Exploit Bundle/Kit and services

Blackhole: 19 CVEs mainly targetting Java and Adobe products
Redkit: 4 CVEs mainly targeting Java

Types of services

Exploit Bundle: Program to embed into website
Bulletproof host: Hosting service to bypass any kind of IP filtering, anti-spam, anti-virus, anti-malware,
law enforcement, etc.

CSCD27 Final Notes.md 12/8/2019

25 / 29

Traffic: Attract peopel to visit the infected webpage

Buying installs of malware
Pro: Easy and can be selected about geolocation of the host
Cons: Pricy

Web Security

Architecture
Separated into client (Web browser) and server side (Web sever & database)
Uses the HTTP, a network protocol for requesting/receiving data on the web

Standard TCP protocol on port 80
Uses different URI/URL to specify resources and different methods for actions

Anatomy of URL

Protocol Server Path Query String Resource GET Params

http:// whitehat.local / index.php ?filter= hello

User Authentication Process
1. Ask user for login and password (Sent to server over HTTP/POST)
2. Verify login/password (based on information on server usually in db)
3. Start a session (once authenticated)
4. Grant access to resources (according to session)

What is a session?
A session is created via a session id (token) between browser and web app
This should be unique and unforgeable long random number or hash stored in cookie
The id is bind to key/value pairs data on server
The id can be created/modified/deleted by user in cookie

But cant access key/value pairs in server

Transport Layer Issues
To steal user credentials, you steal user password or session ID
Threats

1. Attacker can eavesdrop messages
Confidentiality

2. Attack can tamper with messages
Integrity

To address those issues, we have HTTPS (HTTP + TLS)
Provides end-to-end secure channel (Confidentiality) and authentication handshake (Integrity)

CSCD27 Final Notes.md 12/8/2019

26 / 29

This however fails if there is mixed content from elements served with HTTP on HTTPS page, or
control transfer to another HTTP page of same domain

This results in authentiction cookie being sent over HTTP for the pickings
There's also limitations as it only protects the channel, not the client/server

How to protect cookie

Secure Flag
Makes it so that cookie will be sent over HTTPS only
Prevents leaking in case of mixed-content

HttpOnly Flag
Makes cookie not reabable/writeable from frontend
Prevents cookie from being leaked when XSS attack occurs

Ways to steal password

From Client

Social engineering (Phishing)
Keyloggers (Keystroke logging)
Data mining (Emails, logs)
Hack the client's code

From Server

Hack the server
Hack the server's side code

Vulnerabilities

Front-end

Content Spoofing

Basically inject HTML into website via data put into the database
Can be resolved by validating data inserted in the DOM

Cross-Site Scripting (XSS)

Inject JS code into website via data put into the database
Can do stuff like

Add illegitimate content (Same as content spoofing)
Add illegitimate HTTP requests through Ajax (Same as CSRF)
Steal Session ID from cookie
Steal user login/password by modifiy page to forge scam

You can also make worms which spread

Types of XSS Attacks

CSCD27 Final Notes.md 12/8/2019

27 / 29

Reflected XSS
Malicious data sent to backend is meediately sent back to frontend to be inserted into DOM

Stored XSS
Malicious data is stored in backend, and later sent back to be inserted

DOM-based Attack

Malicious data is manipulated in JS and inserted

Can be resolved by validating data before inserting into DOM

Cross-site Request Forgery

Basically make a request to target site from malicious site.
This makes cookies associated to that target to be attached and used

Solution is to use the Same origin policy
Resources must come from same domain (protocol, host, port)
This covers Ajax reuqests and form actions
But not JS scripts, CSS, images, video, sound, plugins
Can be relaxed iframes, cross-origin resource sharing (CORS), or JSONP

Problem

An attacker can execute unwanted but authenticated actions on web app by,
Setting up malicious website with cross-origin requests
Injecting malicious urls into page

Solution is to add a CSRF token
A unique, secret, unpredicatable value generated by server for next HTTP request
Basically its a nonce

Another solution is to use SameSite

Back-end

Incomplete Mediation

Basically server doesn't check requests, hence you can make your own to do stuff
Hence, don't trust frontend data and sensitive operations must be done on backend

Information Leakage

From database dumps or just hacking into system

SQL Injection

Inject SQL/NoSQL code to get/add/modify/delete information, or bypass authentication

SQL Example

db.run("SELECT * FROM users WHERE USERNAME='${ username }' AND PASSWORD='${
password }'");

CSCD27 Final Notes.md 12/8/2019

28 / 29

We can put username as alice, and password as blah' OR '1' = '1'
This would result in password always true. Hence access as alice!

NoSQL Example

db.find({ username, password });

We can put username as alice and password as { gt: "" }
Same effect as SQL example

Web Penetration Testing Tools
Proxy mapper
Vulnerability scanner
Replay HTTP requests
(Exploit tool)

Social Engineering and Information Diving

Social Engineering
The act of manipulating people into performing actions or divulging confidential information, than than
by breaking in or using technical cracking techniques

Basically to get someone to "willingly" give information
Kevin Mitnick, most wanted hacker in history who did alot of phishing

Information diving
The practice of recovering technical data from discarded material

Phishing
Criminally fraudulent process of attempting to acquire senitive information by masquerading as a
trustworthy entity in an electronic communication
Can be bought as services

Spear Phishing
Combines Social Engineering with Phishing

Security Questions
Kinda bad as some people can actually answer them. Also you can combine some to get full
informations

Google Hacking

CSCD27 Final Notes.md 12/8/2019

29 / 29

g g
Using Google search to find security holes in configurations and computer code that websites use

