
Brian Chen 
 

MATB24 – Linear Algebra II  
University of Toronto Scarborough, Fall 2016 

Chapter 3 – Vector Spaces 
3.1 – Vector Spaces and Fields 
Set of rules called Field Axioms: 

• All the same properties as vector space 

• Additive Inverse: There exists for all a, a vector –a such that a+(-a) = (-a)+a = 0 

• Multiplicative Inverse: There exists for all a, a vector a-1 such that aa-1 = a-1a = 1 if a != 0 
Properties to define a set of vectors as a vector space: 

• Closed under addition (V1 + V2 ∈ V) 

• Closed under scalar multiplication (2V1 ∈ V) 

• (u+v)+w = u+(v+w) A1 

• v+w = w+v  A2 

• 0+v = v   A3 

• v+(-v) = 0  A4 

• r(v+w) = rv+rw  S1 

• (r+s)v = rv+sv  S2 

• r(sv) = (rs)v  S3 

• 1v = v   S4 
Elementary Properties of Vector Spaces 

1. Vector 0 is unique vector x satisfying x+v = v for all vector v in V 
2. For each vector v in V, the vector –v is the unique vector y satisfying v + y = 0 
3. If u+v=u+w, wherein u,v,w ∈ V, then v=w 
4. 0v = 0 for all vectors in V 
5. r0 = 0 for all scalars in R 
6. (-r)v = r(-v) = -r(v) for all scalars r in R and vectors v in V 

3.2 – Basic Concepts of Vector Spaces 
Linear Combinations: 
Given vectors v1, v2, …, vk in a vector space V and scalars r1, r2, …, rk in R, the vector 

r1v1+r2v2+…+rnvn    is a linear combination of the vectors v… with scalar coefficients r… 
Spans: 
X is a subset of V, the span of X is the set of all linear combinations of vectors in X, sp(X).  
If W = sp(X) then the vectors in X span or generate W 
If V = sp(X) for some finite subset X of V, then V is finitely generated 
Subspaces: 
A subspace W of a vector space V is a subspace if W fulfills the requirements of a Vector Space as well.  
Independence: 
X is a set of vectors in V, if there exists a r1v1 + r2v2 + rkvk = 0 wherein rj != 0, if such a dependence holds, then X is linearly dependent, 
otherwise it is linearly independent 
To find the linear dependency of a matrix, we simply check if the determinant of the matrix represented by the column vectors in V is 0 
(0 = LI, otherwise LD) 
Bases and Dimension 
A base b is a basis for V if: 

1. Set of vectors in b spans V, or sp(b) = V 
2. Set of vectors is linearly independent 

Dimensions of bases for the same V is the same. 
Dimensions refer to the number of vectors in the span. 
Generating/Extending a basis: 
Create a Matrix A with your vectors and the elementary vectors (all in columns) and reduce to row-echelon form and remove LDs. 

3.3 – Coordinatization of Vectors 
Ordered Bases: 
(e1,e2…en) is the standard ordered basis for Rn 

Instead of talking about sets such as {b1, b2} because that would equal {b2, b1}, we can use an ordered set like (b1,b2) 
Coordinatization of Vectors: 
Every v in V can be represented by r1b1+r2b2…, we call the set of unique scalars [r1,r2…rn] the Coordinatization of v relative to B wherein B 
is a basis for V and (b1, b2…bn) is an ordered basis. 
We can also calculate if things are independent in the vector space P2 if we take B = (x2, x, 1) and row-reduce the matrix represent 
General Solution: We take B = (decreasing/increasing set of values i.e. 1,x,x2 or 1, sin(x), sin(2x)) then form matrix & solve using an 
augmented matrix with the augmented side as our vector so [100..|vector] 

3.4 – Linear Transformations 
Linear Transformations must follow the below properties: 
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• T(u+v) = T(u) + T(v)  [Preservation of addition] 

• T(ru) = rT(u)   [Preservation of scalar multiplication] 
T: V → V’ is to say that the linear transformation T maps from the domain V to the codomain V’  
If W is a subset of V, then T{W} = {T(w) | w ∈ W} is the image of W under T. T[V] is the range of T. 
If W’ is a subset of V’, then T-1{W’} = {v ∈ V | T(v) ∈ W’} is the inverse image of W’ under T. T-1{0’} is the kernel of T. (all v ∈ V maps to 0’) 
The equation T(x) = b 
Ker(T) is the subspace of V is the solution set of the homogeneous transformation equation T(x) = 0. 
A Linear Transformation is One to One: If ker(T) is zero, then T(x) = b has at most one solution, and so T is one-to-one 
T: V→V’ is an invertible transformation if T-1 . T is the identity transformation on V and T . T-1 is the identity transformation on V’ 
Invertible Linear Transformations Must Satisfy: 
One to one: If v1 != v2 then T(v1) != T(v2)  That is, T is one-to-one if ker(T) = 0 
Onto: If v’ is in V’, then T(v) = v’ for some v in V That is, T is onto if range(T) = dim(T) 
Isomorphism 
An isomorphism is a linear transformation T: V→V’ that is one-to-one and onto V’. 
If isomorphism T exists, then it is invertible and its inverse is also an isomorphism 
V and V’ are said to be isomorphic vector spaces 
Matrix Representation of Transformations 
A is the standard matrix where jth column is the column vector of T(ej) where e is the coordinate vector relative to B for the bjth ordered 
basis in B. 
Matrix Rep of T-1 is the inverse of the matrix rep of T relative to B, B’ 

3.5 – Inner Product Spaces 
The inner product on a vector space V is a function that associates each pair of vectors v, w in V with a real number, written <v, w> 
satisfying all u, v, w in V for all scalars r: 

• <v, w> = <w, v> 

• <u, v+w> = <u, v> + <u, w> 

• r<v, w> = <rv w> = <v, rw> 

• <v, v> >= 0 and <v, v> = 0 iff v = 0 
Inner Product Space is a vector space V together with an inner product on V. 
Magnitude: 
The magnitude or norm of a vector v in a n inner product space V is ||v|| = sqrt(<v, v>)  
Also we have that 
||rv|| = |r| ||v|| (can remove a scalar) 
Schwarz Inequality 

 

Chapter 4 – Determinants 
4.4 – Linear Transformations and Determinants 
We have the volume of any n-box defined as V = sqrt(det(AtA)) 
For a transformation T, we have the Rate of Volume Change as det(A) where A is the standard matrix representation of T 
Volume of G in Rn under transformation T is equal to sqrt(det(ATA)) * V 

Chapter 6 – Orthogonality 
6.1 – Projections 
The projection p of b on sp(a) is: p = [(b . a)/(a . a)]a 
The orthogonal complement of a subspace is gotten by using the generating set as ROW vectors, then finding the null-space of A. 
We can use cross prod v1 x v2 to find a vector orthogonal to both vectors. This is u x v = (u2v3 – u3v2)i - (u3v1 – u1v3)j + (u1v2 – u2v1)k 
To find the projection of b on a subspace W, we have: 

1. Select a basis of {v1…vn} (usually given) 
2. Find a basis for total of W or WT usually by cross-product or null-space of W generating set row matrix 
3. Set {v1, v2, … vn} as column vectors, then find augmentation of b into an identity matrix. Let this augmentation be called r 
4. We can then solve for bw = r1v1 + r2v2… rnvn 

6.2 – The Gram-Schmidt Process 
If we know a base is orthogonal, we can simply compute bw using: 
bw = ((b.v1/v1.v1)v1) + ((b.v2/v2.v2)v2) + … + ((b.vn/vn.vn)vn) 
We can create an orthonormal basis by finding an unit vector for each orthogonal basis vector, such as ||vn|| = 1. 
This way, we can set instead of the above equation, bw = ((b.v1)v1) + ((b.v2)v2) + … + ((b.vn)vn) since vn . vn will always be 1. 
Gram-Schmidt Theorem: Let W be a subspace of Rn {a1…an} being a basis for W. There exists an orthonormal basis  
We have the general Gram-Schmidt Formula as: 
vj = aj – ((aj . v1 / v1 . v1)v1 + ... + (aj . vj-1/ vi-1 . vi-1)vj-1)) 
Of course, we can normalize the Gram-Schmidt Formula to become: 
vj = aj – ((aj . v1)v1 + ... + (aj . vj-1)vj-1) 
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6.3 – Orthogonal Matrices 
A Matrix is orthogonal if (ATA) = I. These conditions follow if: 

- Its rows form an orthonormal basis for Rn 
- Its columns form an orthonormal basis for Rn 
- The matrix is orthogonal – A-1 = AT 

For any symmetric matrix n x n A, we can have D = C-1AC wherein D is a diagonalization of the matrix, and C is an orthogonal mult 
We can choose C as our diagonalization matrix by finding the eigenvalues of A, plugging them back into A, finding the eigenvectors of 
A (null space) and then putting those together. 
We can find the orthogonal diagonalization of A by reducing our C into an orthogonal matrix (read: orthonormal) 

6.4 – The Projection Matrix 
The projection of bw of b on the subspace of W is bw = (A(ATA)-1AT) b 
We can have a projection matrix as P = A(ATA)-1AT. 
We have P satisfying two properties: 
P2 = P idempotent 
PT = P symmetric 
We also have another special case, when W = {a1, a2, …} is an orthonormal basis, we can have P = AAT 

Chapter 7 – Change of Basis 
7.1 – Coordinatization and Change of Basis 
If we are to change bases, from B = {b1, b2…} to B’ = {b1, b2}, we can represent B and B’ as matrices MB and MB’ so that 
vB’ = MB’

-1MBvB 
or rewritten vB’ = CvB wherein C = MB’

-1MB. We write this as CB, B’ - the change of coordinates matrix from B to B’ 
To compute the COCM, we place B’ in the LHS, and B in the RHS of an augmented matrix. We reduce B’ to I and modified B is our COC. 

7.2 – Matrix Representation and Similarity 
We can set up an augmented matrix to transfer from RB = C-1AC by having LHS = b1b2… as column vectors, and T(b1)T(b2) on the RHS 
By row-reducing MB|MT(B) we obtain RB as our right hand side when LHS is reduced to I 
Similiarity of Matrices: 
Given that R = C-1AC, we have that: 

1. Eigenvalues of R are the same as eigenvalues of A 
2. Algebraic and geometric multiplicity of each eigenvalue is the same as A for each eigenvalue in R 
3. If v is an eigenvector in A, then C-1v is an eigenvalue in R 

Chapter 8 – Eigenvalues, Further Applications and Computation  
8.1 – Diagonalization of Quadratic Forms 
Every quadratic form in n variables can be written as xTUx, where x is the column vector of variables and U is a nonzero upper matrix 
So we can have something like: 

 which translates to  
Steps for diagonalization of a quadratic form: 

1. Find the symmetric coefficient matrix A 
2. Find the eigenvalues of A, then the eigenvectors 
3. Find the orthonormal basis C of the eigenvectors 
4. If we have det(C) = 1, it is a rotation. Otherwise, change signs of one column in C to have det(C) = 1 if det(C) = -1 
5. This substitution transforms x = Ct to the form from f(x) to diagonal 

Ultimately, we can then read each x,y,z… as row vectors, so that x = (t1,1 – t1,2 + t2,3) and so on. 

Chapter 9 – Complex Scalars 
9.1 – Algebra of Complex Numbers 
Fundamental Theory of Algebra – Every polynomial with coefficients in C has n solutions in C, wherein n is the degree of the 
polynomial and solutions are counted with their algebraic multiplicity 
(a+bi) +/- (c+di) = (a +/- c) + (b +/- d)i 
Modulus of z = a + bi = |z| = sqrt(a2+b2) 
Complex Conjugate z = a+bi is z^ = a-bi 
zz^ = (a+bi)(a-bi) = a2+b2 = |z|2 
w/z = 1/(|z|2)(wz^) 
Polar Form of Complex Numbers 
z = r(cosO + i sin O) 

9.2 – Matrix and Vector Spaces with Complex Scalars 
We have u, v ∈ C then we can assume that u – <v,u>/<v,v>v is perpendicular to v 
Conjugate Transposes –Let A = [aij] be a m x n matrix. 
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Conjugate of (A) = m x n matrix A = [aij] Wherein we define a conjugate as x – yi ➔ x + yi (switch the sign!) 
Conjugate Transpose of (A) = A* = AT 

We have the following properties of a Conjugate Transpose: 
(A*)* = A 
(A+B)* = A* + B* 
(AB)* = B*A* 
(zA)* = z(A*) 
A square matrix U is Unitary if U*U = I 
A square matrix H is Hermitian if H* = H 

9.3 – Eigenvalues and Diagonalization 
We can prove that for every Hermitian matrix, it is diagonalizable by an unitary matrix  
Just like in 6.3 we can choose our C by having the eigenvector span as our column vectors for the matrix C.  
We can call A and B unitarily equivalent if B = C-1AC 
Schur’s Lemma → Letting A be an n x n complex matrix, there is an unitary matrix U such that U-1AU is upper-triangular 
Normal Matrices → A matrix is normal if its conjugate transpose commutes with itself, that is, A*A = AA* 
A matrix must be normal to be unitarily diagonalizable 

9.4 – Jordan Canonical Form 
Jordan Block – Any matrix where diagonals are same value, and 1s appear on top of the diagonal 
Any m x m Jordon Blocks have the following properties: 

1. (J – I)ei = ei-1 and (J – I)e1 = 0 
2. (J – I)m = 0 except for any non m powers 
3. Jei = ei + ei-1 whereas Je1 = e1 

The definition of a canonical Jordan canonical form is blocks of Jordan Blocks following each other closely 
A Jordan Canonical form can be computed if we know eigenvalues of A and the rank of (A – I)k for each lambda and all pos k. 
Every square matrix M has a Jordan canonical form, that is, it is similar to a Jordan canonical form 

Questions and Answers 
3.3 – Coordinatization of Vectors 

 
6.2 – The Gram-Schmidt Process 
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