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Chapter 3 — Vector Spaces

3.1 — Vector Spaces and Fields
Set of rules called Field Axioms:

e All the same properties as vector space

e Additive Inverse: There exists for all a, a vector —a such that a+(-a) = (-a)+a =0

e  Multiplicative Inverse: There exists for all a, a vector a' such thataa’=a'a=1ifa!=0
Properties to define a set of vectors as a vector space:

e Closed under addition (V1 + V2 € V)

e Closed under scalar multiplication (2V4 € V)
o (utv)+w = u+(v+w) A1l
o VHW =Wty A2
o O+tv=v A3
e vH(-v)=0 A4
o r(vtw) = rv+rw S1
o (rts)v=rvtsy S2
e 1(sv)=(rs)v S3
e lv=v S4

Elementary Properties of Vector Spaces

Vector 0 is unique vector x satisfying x+v = v for all vector vin V

For each vector v in V, the vector —v is the unique vector y satisfyingv +y =0
If u+v=u+w, wherein u,v,w € V, then v=w

Ov =0 for all vectors in V

r0 = 0 for all scalarsinR

(-r)v = r(-v) = -r(v) for all scalars r in R and vectors v in V

3.2 - Basic Concepts of Vector Spaces
Linear Combinations:
Given vectors vi, Vo, ..., Vk in a vector space V and scalars rq, ry, ..., Ic in R, the vector
rV1+rVot..+mVn is a linear combination of the vectors v... with scalar coefficients r...

Spans:
X is a subset of V, the span of X is the set of all linear combinations of vectors in X, sp(X).
If W = sp(X) then the vectors in X span or generate W
If V = sp(X) for some finite subset X of V, then V is finitely generated
Subspaces:
A subspace W of a vector space V is a subspace if W fulfills the requirements of a Vector Space as well.
Independence:
X is a set of vectors in V, if there exists a rivq + rav2 + revi = 0 wherein rj 1= 0, if such a dependence holds, then X is linearly dependent,
otherwise it is linearly independent
To find the linear dependency of a matrix, we simply check if the determinant of the matrix represented by the column vectors in V is 0
(0 = LI, otherwise LD)
Bases and Dimension
A base b is a basis for V if:

1. Setof vectors in b spans V, or sp(b) =V

2. Set of vectors is linearly independent
Dimensions of bases for the same V is the same.
Dimensions refer to the number of vectors in the span.
Generating/Extending a basis:
Create a Matrix A with your vectors and the elementary vectors (all in columns) and reduce to row-echelon form and remove LDs.

3.3 - Coordinatization of Vectors

Ordered Bases:

(e1,e2...en) is the standard ordered basis for R

Instead of talking about sets such as {b1, b2} because that would equal {b,, b1}, we can use an ordered set like (b1,b2)

Coordinatization of Vectors:

Every v in V can be represented by ribi+r2b,..., we call the set of unique scalars [r1,r2...r,] the Coordinatization of v relative to B wherein B
is a basis for V and (b, b...by) is an ordered basis.

We can also calculate if things are independent in the vector space P if we take B = (x2, x, 1) and row-reduce the matrix represent
General Solution: We take B = (decreasing/increasing set of values i.e. 1,x,x2 or 1, sin(x), sin(2x)) then form matrix & solve using an
augmented matrix with the augmented side as our vector so [100..|vector]

3.4 - Linear Transformations
Linear Transformations must follow the below properties:
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e T(utv) =T(u) + T(v) [Preservation of addition]
e  T(ru) =rT(u) [Preservation of scalar multiplication]
T:V = V'is to say that the linear transformation T maps from the domain V to the codomain V'
If W is a subset of V, then T{W} = {T(w) | w € W} is the image of W under T. T[V] is the range of T.
If W' is a subset of V', then T{W'} ={v € V | T(v) € W'} is the inverse image of W’ under T. T{0"} is the kernel of T. (all v € V maps to 0’)
The equation T(x) = b
Ker(T) is the subspace of V is the solution set of the homogeneous transformation equation T(x) = 0.
A Linear Transformation is One to One: If ker(T) is zero, then T(x) = b has at most one solution, and so T is one-to-one
T: V>V'is an invertible transformation if T . T is the identity transformation on V and T . T-is the identity transformation on V'’
Invertible Linear Transformations Must Satisfy:

One to one: If v1!= vothen T(vq) = T(v2) That is, T is one-to-one if ker(T) = 0
Onto: If V'is in V', then T(v) = v' for some vin V That is, T is onto if range(T) = dim(T)
Isomorphism

An isomorphism is a linear transformation T: V>V’ that is one-to-one and onto V'.

If isomorphism T exists, then it is invertible and its inverse is also an isomorphism

V and V' are said to be isomorphic vector spaces

Matrix Representation of Transformations

A is the standard matrix where jth column is the column vector of T(ej) where e is the coordinate vector relative to B for the bjth ordered
basis in B.

Matrix Rep of T-1 is the inverse of the matrix rep of T relative to B, B’

3.5 - Inner Product Spaces
The inner product on a vector space V is a function that associates each pair of vectors v, w in V with a real number, written <v, w>
satisfying all u, v, win V for all scalars r:

° <V, W> = <w, v>

. <u, v+tw> = <u, v> + <u, w>

o IV, W>=<[VW>=<V, w>

e <yv>>=0and<v,v>=0iffv=0
Inner Product Space is a vector space V together with an inner product on V.
Magnitude:
The magnitude or norm of a vector v in a n inner product space V is ||v|| = sqrt(<v, v>)
Also we have that
lIrvll = Ir] [Iv]l (can remove a scalar)
Schwarz Inequality

Schwarz inequality: [(v, w)| = |v] ||l
Triangle inequality: |[v + w|| < ||v|| + ||w].

Chapter 4 — Determinants

4.4 - Linear Transformations and Determinants

We have the volume of any n-box defined as V = sqrt(det(AtA))

For a transformation T, we have the Rate of Volume Change as det(A) where A is the standard matrix representation of T
Volume of G in R" under transformation T is equal to sqrt(det(ATA)) * V

Chapter 6 — Orthogonality

6.1 — Projections
The projection p of bon sp(a) is: p=[(b . a)/(a. a)la
The orthogonal complement of a subspace is gotten by using the generating set as ROW vectors, then finding the null-space of A.
We can use cross prod v; x v, to find a vector orthogonal to both vectors. This is u x v = (uavz = usvz)i - (Usv1 = u1vs)j + (U1v2 — uzavq)k
To find the projection of b on a subspace W, we have:

1. Select a basis of {v;..vn} (usually given)

2. Find a basis for total of W or WT usually by cross-product or null-space of W generating set row matrix

3. Set{vy, vy, .. va} as column vectors, then find augmentation of b into an identity matrix. Let this augmentation be called r

4. We can then solve for by = r1v1 + rava... ravn

6.2 — The Gram-Schmidt Process

If we know a base is orthogonal, we can simply compute by, using:

bw = ((b.v1/v1.v1)v1) + ((b.v2/V2.v2)V2) + ... + ((D.Vn/Vn.Vn)Vn)

We can create an orthonormal basis by finding an unit vector for each orthogonal basis vector, such as |[|vql| = 1.

This way, we can set instead of the above equation, by = ((b.v1)v1) + ((b.v2)v2) * ... + ((b.vn)va) since vy, . v, will always be 1.
Gram-Schmidt Theorem: Let W be a subspace of R" {a;_a} being a basis for W. There exists an orthonormal basis

We have the general Gram-Schmidt Formula as:

vi=aj— ((@.va/vi.vi)vi+ ...+ (8. Via/ Vi . Via)Via))

Of course, we can normalize the Gram-Schmidt Formula to become:

Vi=aj— ((aj V)V L+ (a,» . Vj.-|)Vj.1)



Brian Chen

6.3 - Orthogonal Matrices
A Matrix is orthogonal if (ATA) = I. These conditions follow if:
- Its rows form an orthonormal basis for R"
- Its columns form an orthonormal basis for R
- The matrix is orthogonal — A1 = AT
For any symmetric matrix n x n A, we can have D = CTAC wherein D is a diagonalization of the matrix, and C is an orthogonal mult
We can choose C as our diagonalization matrix by finding the eigenvalues of A, plugging them back into A, finding the eigenvectors of
A (null space) and then putting those together.
We can find the orthogonal diagonalization of A by reducing our C into an orthogonal matrix (read: orthonormal)

6.4 — The Projection Matrix

The projection of by of b on the subspace of W is b, = (A(ATA)'AT) b

We can have a projection matrix as P = A(ATA)-1AT.

We have P satisfying two properties:

P2 = P idempotent

PT= P symmetric

We also have another special case, when W = {a, ay, ..} is an orthonormal basis, we can have P = AAT

Chapter 7 - Change of Basis

7.1 - Coordinatization and Change of Basis

If we are to change bases, from B = {b1, b2..} to B’ = {b4, b2}, we can represent B and B’ as matrices Mg and Mg so that

vg' = Mg~ 1Mgvg

or rewritten vg' = Cvg wherein C = Mg-"Mg. We write this as Cg, g - the change of coordinates matrix from B to B’

To compute the COCM, we place B’ in the LHS, and B in the RHS of an augmented matrix. We reduce B’ to | and modified B is our COC.

7.2 — Matrix Representation and Similarity
We can set up an augmented matrix to transfer from Rg = CAC by having LHS = b1b,... as column vectors, and T(b1)T(b2) on the RHS
By row-reducing Ms|Mr@) we obtain Rg as our right hand side when LHS is reduced to |
Similiarity of Matrices:
Given that R = CTAC, we have that:
1. Eigenvalues of R are the same as eigenvalues of A
2. Algebraic and geometric multiplicity of each eigenvalue is the same as A for each eigenvalue in R
3. Ifvis aneigenvectorin A, then C'v is an eigenvalue in R

Chapter 8 - Eigenvalues, Further Applications and Computation

8.1 - Diagonalization of Quadratic Forms
Every quadratic form in n variables can be written as xTUx, where x is the column vector of variables and U is a nonzero upper matrix
So we can have something like:

1 -2 6 [x
S | : :
R I lJ; x? — 2xy + 6xz + z* in the form of matrix product

which translates to

Steps for diagonalization of a quadratic form:

Find the symmetric coefficient matrix A

Find the eigenvalues of A, then the eigenvectors

Find the orthonormal basis C of the eigenvectors

If we have det(C) = 1, it is a rotation. Otherwise, change signs of one column in C to have det(C) = 1 if det(C) = -1
. This substitution transforms x = Ct to the form from f(x) to diagonal

Ultimately, we can then read each x,y,z... as row vectors, so that x = (t11 — t1.2+ t23) and so on.

Chapter 9 — Complex Scalars
9.1 — Algebra of Complex Numbers

Fundamental Theory of Algebra — Every polynomial with coefficients in C has n solutions in C, wherein n is the degree of the
polynomial and solutions are counted with their algebraic multiplicity

(a+bi) +/- (c+di) = (@ +/- c) + (b +/- d)i

Modulus of z = a + bi = |z| = sqrt(aZ+b?)

Complex Conjugate z = a+bi is z* = a-bi

zz" = (a+bi)(a-bi) = az+b? = |z|2

w/z = 1/(|z|?)(wz*)

Polar Form of Complex Numbers

z =r(cosO + i sin O)

9.2 - Matrix and Vector Spaces with Complex Scalars

We have u, v € C then we can assume that u — <v,u>/<v,v>v is perpendicular to v
Conjugate Transposes —Let A = [a;] be a m x n matrix.
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Conjugate of (A) = m x n matrix A = [a;] Wherein we define a conjugate as x - yi = x + yi (switch the sign!)
Conjugate Transpose of (A) = A* = AT

We have the following properties of a Conjugate Transpose:

(A%)* = A

(A+B)* = A* + B*

(AB)* = B*A*

(zA)* = z(A%)

A square matrix U is Unitary if U*U = |

A square matrix H is Hermitian if H* = H

9.3 - Eigenvalues and Diagonalization

We can prove that for every Hermitian matrix, it is diagonalizable by an unitary matrix

Just like in 6.3 we can choose our C by having the eigenvector span as our column vectors for the matrix C.
We can call A and B unitarily equivalent if B = C-1AC

Schur’'s Lemma - Letting A be an n x n complex matrix, there is an unitary matrix U such that U-'AU is upper-triangular
Normal Matrices - A matrix is normal if its conjugate transpose commutes with itself, that is, A*A = AA*
A matrix must be normal to be unitarily diagonalizable

9.4 - Jordan Canonical Form
Jordan Block — Any matrix where diagonals are same value, and 1s appear on top of the diagonal
Any m x m Jordon Blocks have the following properties:
1. (J-Dei=erand(J-1)e1=0
2. (J - I)m =0 except for any non m powers
3. Jei=ei+ eiq whereas Jeq = eq
The definition of a canonical Jordan canonical form is blocks of Jordan Blocks following each other closely

A Jordan Canonical form can be computed if we know eigenvalues of A and the rank of (A — I)kfor each lambda and all pos k.

Every square matrix M has a Jordan canonical form, that is, it is similar to a Jordan canonical form

Questions and Answers

3.3 - Coordinatization of Vectors

Find the coordinate vectors of [1, —1] and of [— 1, —8] relative to the ordered
basis B = ({1, 1], [1, 2]) of R

We see that [1, ~1]; = [1, 0], because
(1, ~1] = 11, 1] + 0[1, 21,

To find [~ 1, ~8],, we must find r, and r, such that [-1, —8] = r,[1, —1] +
r, [1, 2]. Equating components of this vector equation, we obtain the linear
system

I'1+ r2=-1
=r, + 2= &

The solution of this system is r, = 2, r, = =3, so we have [ 1, 8], = [2, —3].
Figure 3.1 indicates the geometric meaning of these coordinates. ®

Brian Chen

6.2 — The Gram-Schmidt Process



EXAMPLE 6

SOLUTION

Find an orthonormal basis for the subspace
W =sp([l,2,0,2],(2 1, 1, 1], 1,0, 1, 1])
of R".
First we find an orthogonal basis, using formula (6). We take v, = [1, 2, 0, 2]
and compute v, by subtracting from a, = [2, 1, 1, 1] its projection on v;:

. 4 1 i
V., =2, — _:2__%"] = [2, 1, l, 1 -g[lyzs 01 2] = [5) —31 l: —"3_]'
1 t

fo ease computations, we replace v, by the parallel vector 3v,, which serves just
as well, obtaining v, = [4, ~1, 3, —i]. Finally, we subtract from a; =[1, 0, I, 1]
its projection on the subspace spfy,, v,), obtaining

a; vy ;Y.
V3=a3‘ 3 lv_l 2'

iy DR
. 3 6
=01,0,1,11-511,2,0,2] - 35 (4, -1, 3, -1]
=[_2 435
L9 999

Replacing v, by 9v,, we see that
{01,2,0,2), (4, -1, 3, -1),[-2, -4, 3, 5]}

is an orthogonal basis for W. Normalizing each vector tc length 1, we
obtain

I !
{%[1, 2,0,2L 354 -1.3, -1, 7 g (-2 ~4,3, 9]

as an orthonormal basis for W. &
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